"""wrapper around part of Katherine Crowson's k-diffusion library, making it call compatible with other Samplers""" import k_diffusion as K import torch import torch.nn as nn from ldm.invoke.devices import choose_torch_device from ldm.models.diffusion.sampler import Sampler from ldm.util import rand_perlin_2d from ldm.modules.diffusionmodules.util import ( make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor, ) def cfg_apply_threshold(result, threshold = 0.0, scale = 0.7): if threshold <= 0.0: return result maxval = 0.0 + torch.max(result).cpu().numpy() minval = 0.0 + torch.min(result).cpu().numpy() if maxval < threshold and minval > -threshold: return result if maxval > threshold: maxval = min(max(1, scale*maxval), threshold) if minval < -threshold: minval = max(min(-1, scale*minval), -threshold) return torch.clamp(result, min=minval, max=maxval) class CFGDenoiser(nn.Module): def __init__(self, model, threshold = 0, warmup = 0): super().__init__() self.inner_model = model self.threshold = threshold self.warmup_max = warmup self.warmup = max(warmup / 10, 1) def forward(self, x, sigma, uncond, cond, cond_scale): x_in = torch.cat([x] * 2) sigma_in = torch.cat([sigma] * 2) cond_in = torch.cat([uncond, cond]) unconditioned_x, conditioned_x = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2) if self.warmup < self.warmup_max: thresh = max(1, 1 + (self.threshold - 1) * (self.warmup / self.warmup_max)) self.warmup += 1 else: thresh = self.threshold if thresh > self.threshold: thresh = self.threshold # damian0815 thinking out loud notes: # b + (a - b)*scale # starting at the output that emerges applying the negative prompt (by default ''), # (-> this is why the unconditioning feels like hammer) # move toward the positive prompt by an amount controlled by cond_scale. return cfg_apply_threshold(unconditioned_x + (conditioned_x - unconditioned_x) * cond_scale, thresh) class ProgrammableCFGDenoiser(CFGDenoiser): def forward(self, x, sigma, uncond, cond, cond_scale): forward_lambda = lambda x, t, c: self.inner_model(x, t, cond=c) x_new = Sampler.apply_weighted_conditioning_list(x, sigma, forward_lambda, uncond, cond, cond_scale) if self.warmup < self.warmup_max: thresh = max(1, 1 + (self.threshold - 1) * (self.warmup / self.warmup_max)) self.warmup += 1 else: thresh = self.threshold if thresh > self.threshold: thresh = self.threshold return cfg_apply_threshold(x_new, threshold=thresh) class KSampler(Sampler): def __init__(self, model, schedule='lms', device=None, **kwargs): denoiser = K.external.CompVisDenoiser(model) super().__init__( denoiser, schedule, steps=model.num_timesteps, ) self.sigmas = None self.ds = None self.s_in = None def forward(self, x, sigma, uncond, cond, cond_scale): x_in = torch.cat([x] * 2) sigma_in = torch.cat([sigma] * 2) cond_in = torch.cat([uncond, cond]) uncond, cond = self.inner_model( x_in, sigma_in, cond=cond_in ).chunk(2) return uncond + (cond - uncond) * cond_scale def make_schedule( self, ddim_num_steps, ddim_discretize='uniform', ddim_eta=0.0, verbose=False, ): outer_model = self.model self.model = outer_model.inner_model super().make_schedule( ddim_num_steps, ddim_discretize='uniform', ddim_eta=0.0, verbose=False, ) self.model = outer_model self.ddim_num_steps = ddim_num_steps # we don't need both of these sigmas, but storing them here to make # comparison easier later on self.model_sigmas = self.model.get_sigmas(ddim_num_steps) self.karras_sigmas = K.sampling.get_sigmas_karras( n=ddim_num_steps, sigma_min=self.model.sigmas[0].item(), sigma_max=self.model.sigmas[-1].item(), rho=7., device=self.device, ) self.sigmas = self.model_sigmas #self.sigmas = self.karras_sigmas # ALERT: We are completely overriding the sample() method in the base class, which # means that inpainting will not work. To get this to work we need to be able to # modify the inner loop of k_heun, k_lms, etc, as is done in an ugly way # in the lstein/k-diffusion branch. @torch.no_grad() def decode( self, z_enc, cond, t_enc, img_callback=None, unconditional_guidance_scale=1.0, unconditional_conditioning=None, use_original_steps=False, init_latent = None, mask = None, ): samples,_ = self.sample( batch_size = 1, S = t_enc, x_T = z_enc, shape = z_enc.shape[1:], conditioning = cond, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning = unconditional_conditioning, img_callback = img_callback, x0 = init_latent, mask = mask ) return samples # this is a no-op, provided here for compatibility with ddim and plms samplers @torch.no_grad() def stochastic_encode(self, x0, t, use_original_steps=False, noise=None): return x0 # Most of these arguments are ignored and are only present for compatibility with # other samples @torch.no_grad() def sample( self, S, batch_size, shape, conditioning=None, callback=None, normals_sequence=None, img_callback=None, quantize_x0=False, eta=0.0, mask=None, x0=None, temperature=1.0, noise_dropout=0.0, score_corrector=None, corrector_kwargs=None, verbose=True, x_T=None, log_every_t=100, unconditional_guidance_scale=1.0, unconditional_conditioning=None, threshold = 0, perlin = 0, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... **kwargs, ): def route_callback(k_callback_values): if img_callback is not None: img_callback(k_callback_values['x'],k_callback_values['i']) # if make_schedule() hasn't been called, we do it now if self.sigmas is None: self.make_schedule( ddim_num_steps=S, ddim_eta = eta, verbose = False, ) # sigmas are set up in make_schedule - we take the last steps items sigmas = self.sigmas[-S-1:] # x_T is variation noise. When an init image is provided (in x0) we need to add # more randomness to the starting image. if x_T is not None: if x0 is not None: x = x_T + torch.randn_like(x0, device=self.device) * sigmas[0] else: x = x_T * sigmas[0] else: x = torch.randn([batch_size, *shape], device=self.device) * sigmas[0] model_wrap_cfg = ProgrammableCFGDenoiser(self.model, threshold=threshold, warmup=max(0.8*S,S-10)) extra_args = { 'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': unconditional_guidance_scale, } print(f'>> Sampling with k_{self.schedule} starting at step {len(self.sigmas)-S-1} of {len(self.sigmas)-1} ({S} new sampling steps)') return ( K.sampling.__dict__[f'sample_{self.schedule}']( model_wrap_cfg, x, sigmas, extra_args=extra_args, callback=route_callback ), None, ) # this code will support inpainting if and when ksampler API modified or # a workaround is found. @torch.no_grad() def p_sample( self, img, cond, ts, index, unconditional_guidance_scale=1.0, unconditional_conditioning=None, **kwargs, ): if self.model_wrap is None: self.model_wrap = CFGDenoiser(self.model) extra_args = { 'cond': cond, 'uncond': unconditional_conditioning, 'cond_scale': unconditional_guidance_scale, } if self.s_in is None: self.s_in = img.new_ones([img.shape[0]]) if self.ds is None: self.ds = [] # terrible, confusing names here steps = self.ddim_num_steps t_enc = self.t_enc # sigmas is a full steps in length, but t_enc might # be less. We start in the middle of the sigma array # and work our way to the end after t_enc steps. # index starts at t_enc and works its way to zero, # so the actual formula for indexing into sigmas: # sigma_index = (steps-index) s_index = t_enc - index - 1 img = K.sampling.__dict__[f'_{self.schedule}']( self.model_wrap, img, self.sigmas, s_index, s_in = self.s_in, ds = self.ds, extra_args=extra_args, ) return img, None, None # REVIEW THIS METHOD: it has never been tested. In particular, # we should not be multiplying by self.sigmas[0] if we # are at an intermediate step in img2img. See similar in # sample() which does work. def get_initial_image(self,x_T,shape,steps): print(f'WARNING: ksampler.get_initial_image(): get_initial_image needs testing') x = (torch.randn(shape, device=self.device) * self.sigmas[0]) if x_T is not None: return x_T + x else: return x def prepare_to_sample(self,t_enc): self.t_enc = t_enc self.model_wrap = None self.ds = None self.s_in = None def q_sample(self,x0,ts): ''' Overrides parent method to return the q_sample of the inner model. ''' return self.model.inner_model.q_sample(x0,ts)