"""omnibus module to be used with the runwayml 9-channel custom inpainting model""" import torch import numpy as np from einops import repeat from PIL import Image, ImageOps, ImageChops from ldm.invoke.devices import choose_autocast from ldm.invoke.generator.base import downsampling from ldm.invoke.generator.img2img import Img2Img from ldm.invoke.generator.txt2img import Txt2Img class Omnibus(Img2Img,Txt2Img): def __init__(self, model, precision): super().__init__(model, precision) def get_make_image( self, prompt, sampler, steps, cfg_scale, ddim_eta, conditioning, width, height, init_image = None, mask_image = None, strength = None, step_callback=None, threshold=0.0, perlin=0.0, mask_blur_radius: int = 8, **kwargs): """ Returns a function returning an image derived from the prompt and the initial image Return value depends on the seed at the time you call it. """ self.perlin = perlin num_samples = 1 sampler.make_schedule( ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False ) if isinstance(init_image, Image.Image): self.pil_image = init_image if init_image.mode != 'RGB': init_image = init_image.convert('RGB') init_image = self._image_to_tensor(init_image) if isinstance(mask_image, Image.Image): self.pil_mask = mask_image mask_image = ImageChops.multiply(mask_image.convert('L'), self.pil_image.split()[-1]) mask_image = self._image_to_tensor(ImageOps.invert(mask_image), normalize=False) self.mask_blur_radius = mask_blur_radius t_enc = steps if init_image is not None and mask_image is not None: # inpainting masked_image = init_image * (1 - mask_image) # masked image is the image masked by mask - masked regions zero elif init_image is not None: # img2img scope = choose_autocast(self.precision) with scope(self.model.device.type): self.init_latent = self.model.get_first_stage_encoding( self.model.encode_first_stage(init_image) ) # move to latent space # create a completely black mask (1s) mask_image = torch.ones(1, 1, init_image.shape[2], init_image.shape[3], device=self.model.device) # and the masked image is just a copy of the original masked_image = init_image else: # txt2img init_image = torch.zeros(1, 3, height, width, device=self.model.device) mask_image = torch.ones(1, 1, height, width, device=self.model.device) masked_image = init_image self.init_latent = init_image height = init_image.shape[2] width = init_image.shape[3] model = self.model def make_image(x_T): with torch.no_grad(): scope = choose_autocast(self.precision) with scope(self.model.device.type): batch = self.make_batch_sd( init_image, mask_image, masked_image, prompt=prompt, device=model.device, num_samples=num_samples, ) c = model.cond_stage_model.encode(batch["txt"]) c_cat = list() for ck in model.concat_keys: cc = batch[ck].float() if ck != model.masked_image_key: bchw = [num_samples, 4, height//8, width//8] cc = torch.nn.functional.interpolate(cc, size=bchw[-2:]) else: cc = model.get_first_stage_encoding(model.encode_first_stage(cc)) c_cat.append(cc) c_cat = torch.cat(c_cat, dim=1) # cond cond={"c_concat": [c_cat], "c_crossattn": [c]} # uncond cond uc_cross = model.get_unconditional_conditioning(num_samples, "") uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]} shape = [model.channels, height//8, width//8] samples, _ = sampler.sample( batch_size = 1, S = steps, x_T = x_T, conditioning = cond, shape = shape, verbose = False, unconditional_guidance_scale = cfg_scale, unconditional_conditioning = uc_full, eta = 1.0, img_callback = step_callback, threshold = threshold, ) if self.free_gpu_mem: self.model.model.to("cpu") return self.sample_to_image(samples) return make_image def make_batch_sd( self, image, mask, masked_image, prompt, device, num_samples=1): batch = { "image": repeat(image.to(device=device), "1 ... -> n ...", n=num_samples), "txt": num_samples * [prompt], "mask": repeat(mask.to(device=device), "1 ... -> n ...", n=num_samples), "masked_image": repeat(masked_image.to(device=device), "1 ... -> n ...", n=num_samples), } return batch def get_noise(self, width:int, height:int): if self.init_latent is not None: height = self.init_latent.shape[2] width = self.init_latent.shape[3] return Txt2Img.get_noise(self,width,height) def sample_to_image(self, samples)->Image.Image: gen_result = super().sample_to_image(samples).convert('RGB') if self.pil_image is None or self.pil_mask is None: return gen_result corrected_result = super(Img2Img, self).repaste_and_color_correct(gen_result, self.pil_image, self.pil_mask, self.mask_blur_radius) return corrected_result