import os import numpy as np import PIL from PIL import Image from torch.utils.data import Dataset from torchvision import transforms import random imagenet_templates_small = [ 'a painting in the style of {}', 'a rendering in the style of {}', 'a cropped painting in the style of {}', 'the painting in the style of {}', 'a clean painting in the style of {}', 'a dirty painting in the style of {}', 'a dark painting in the style of {}', 'a picture in the style of {}', 'a cool painting in the style of {}', 'a close-up painting in the style of {}', 'a bright painting in the style of {}', 'a cropped painting in the style of {}', 'a good painting in the style of {}', 'a close-up painting in the style of {}', 'a rendition in the style of {}', 'a nice painting in the style of {}', 'a small painting in the style of {}', 'a weird painting in the style of {}', 'a large painting in the style of {}', ] imagenet_dual_templates_small = [ 'a painting in the style of {} with {}', 'a rendering in the style of {} with {}', 'a cropped painting in the style of {} with {}', 'the painting in the style of {} with {}', 'a clean painting in the style of {} with {}', 'a dirty painting in the style of {} with {}', 'a dark painting in the style of {} with {}', 'a cool painting in the style of {} with {}', 'a close-up painting in the style of {} with {}', 'a bright painting in the style of {} with {}', 'a cropped painting in the style of {} with {}', 'a good painting in the style of {} with {}', 'a painting of one {} in the style of {}', 'a nice painting in the style of {} with {}', 'a small painting in the style of {} with {}', 'a weird painting in the style of {} with {}', 'a large painting in the style of {} with {}', ] per_img_token_list = [ 'א', 'ב', 'ג', 'ד', 'ה', 'ו', 'ז', 'ח', 'ט', 'י', 'כ', 'ל', 'מ', 'נ', 'ס', 'ע', 'פ', 'צ', 'ק', 'ר', 'ש', 'ת', ] class PersonalizedBase(Dataset): def __init__( self, data_root, size=None, repeats=100, interpolation='bicubic', flip_p=0.5, set='train', placeholder_token='*', per_image_tokens=False, center_crop=False, ): self.data_root = data_root self.image_paths = [ os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root) if file_path != ".DS_Store" ] # self._length = len(self.image_paths) self.num_images = len(self.image_paths) self._length = self.num_images self.placeholder_token = placeholder_token self.per_image_tokens = per_image_tokens self.center_crop = center_crop if per_image_tokens: assert self.num_images < len( per_img_token_list ), f"Can't use per-image tokens when the training set contains more than {len(per_img_token_list)} tokens. To enable larger sets, add more tokens to 'per_img_token_list'." if set == 'train': self._length = self.num_images * repeats self.size = size self.interpolation = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, }[interpolation] self.flip = transforms.RandomHorizontalFlip(p=flip_p) def __len__(self): return self._length def __getitem__(self, i): example = {} image = Image.open(self.image_paths[i % self.num_images]) if not image.mode == 'RGB': image = image.convert('RGB') if self.per_image_tokens and np.random.uniform() < 0.25: text = random.choice(imagenet_dual_templates_small).format( self.placeholder_token, per_img_token_list[i % self.num_images] ) else: text = random.choice(imagenet_templates_small).format( self.placeholder_token ) example['caption'] = text # default to score-sde preprocessing img = np.array(image).astype(np.uint8) if self.center_crop: crop = min(img.shape[0], img.shape[1]) h, w, = ( img.shape[0], img.shape[1], ) img = img[ (h - crop) // 2 : (h + crop) // 2, (w - crop) // 2 : (w + crop) // 2, ] image = Image.fromarray(img) if self.size is not None: image = image.resize( (self.size, self.size), resample=self.interpolation ) image = self.flip(image) image = np.array(image).astype(np.uint8) example['image'] = (image / 127.5 - 1.0).astype(np.float32) return example