# copied from https://github.com/tencent-ailab/IP-Adapter (Apache License 2.0) # tencent ailab comment: modified from # https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py import math import torch import torch.nn as nn # FFN def FeedForward(dim: int, mult: int = 4): inner_dim = dim * mult return nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, inner_dim, bias=False), nn.GELU(), nn.Linear(inner_dim, dim, bias=False), ) def reshape_tensor(x: torch.Tensor, heads: int): bs, length, _ = x.shape # (bs, length, width) --> (bs, length, n_heads, dim_per_head) x = x.view(bs, length, heads, -1) # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head) x = x.transpose(1, 2) # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head) x = x.reshape(bs, heads, length, -1) return x class PerceiverAttention(nn.Module): def __init__(self, *, dim: int, dim_head: int = 64, heads: int = 8): super().__init__() self.scale = dim_head**-0.5 self.dim_head = dim_head self.heads = heads inner_dim = dim_head * heads self.norm1 = nn.LayerNorm(dim) self.norm2 = nn.LayerNorm(dim) self.to_q = nn.Linear(dim, inner_dim, bias=False) self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) self.to_out = nn.Linear(inner_dim, dim, bias=False) def forward(self, x: torch.Tensor, latents: torch.Tensor): """ Args: x (torch.Tensor): image features shape (b, n1, D) latent (torch.Tensor): latent features shape (b, n2, D) """ x = self.norm1(x) latents = self.norm2(latents) b, L, _ = latents.shape q = self.to_q(latents) kv_input = torch.cat((x, latents), dim=-2) k, v = self.to_kv(kv_input).chunk(2, dim=-1) q = reshape_tensor(q, self.heads) k = reshape_tensor(k, self.heads) v = reshape_tensor(v, self.heads) # attention scale = 1 / math.sqrt(math.sqrt(self.dim_head)) weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) out = weight @ v out = out.permute(0, 2, 1, 3).reshape(b, L, -1) return self.to_out(out) class Resampler(nn.Module): def __init__( self, dim: int = 1024, depth: int = 8, dim_head: int = 64, heads: int = 16, num_queries: int = 8, embedding_dim: int = 768, output_dim: int = 1024, ff_mult: int = 4, ): super().__init__() self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5) self.proj_in = nn.Linear(embedding_dim, dim) self.proj_out = nn.Linear(dim, output_dim) self.norm_out = nn.LayerNorm(output_dim) self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append( nn.ModuleList( [ PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), FeedForward(dim=dim, mult=ff_mult), ] ) ) @classmethod def from_state_dict( cls, state_dict: dict[str, torch.Tensor], depth: int = 8, dim_head: int = 64, heads: int = 16, num_queries: int = 8, ff_mult: int = 4, ): """A convenience function that initializes a Resampler from a state_dict. Some of the shape parameters are inferred from the state_dict (e.g. dim, embedding_dim, etc.). At the time of writing, we did not have a need for inferring ALL of the shape parameters from the state_dict, but this would be possible if needed in the future. Args: state_dict (dict[torch.Tensor]): The state_dict to load. depth (int, optional): dim_head (int, optional): heads (int, optional): ff_mult (int, optional): Returns: Resampler """ dim = state_dict["latents"].shape[2] num_queries = state_dict["latents"].shape[1] embedding_dim = state_dict["proj_in.weight"].shape[-1] output_dim = state_dict["norm_out.weight"].shape[0] model = cls( dim=dim, depth=depth, dim_head=dim_head, heads=heads, num_queries=num_queries, embedding_dim=embedding_dim, output_dim=output_dim, ff_mult=ff_mult, ) model.load_state_dict(state_dict) return model def forward(self, x: torch.Tensor): latents = self.latents.repeat(x.size(0), 1, 1) x = self.proj_in(x) for attn, ff in self.layers: latents = attn(x, latents) + latents latents = ff(latents) + latents latents = self.proj_out(latents) return self.norm_out(latents)