# pytorch_diffusion + derived encoder decoder
import gc
import math
import torch
import torch.nn as nn
from torch.nn.functional import silu
import numpy as np
from einops import rearrange

from ldm.util import instantiate_from_config
from ldm.modules.attention import LinearAttention

import psutil

def get_timestep_embedding(timesteps, embedding_dim):
    """
    This matches the implementation in Denoising Diffusion Probabilistic Models:
    From Fairseq.
    Build sinusoidal embeddings.
    This matches the implementation in tensor2tensor, but differs slightly
    from the description in Section 3.5 of "Attention Is All You Need".
    """
    assert len(timesteps.shape) == 1

    half_dim = embedding_dim // 2
    emb = math.log(10000) / (half_dim - 1)
    emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
    emb = emb.to(device=timesteps.device)
    emb = timesteps.float()[:, None] * emb[None, :]
    emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
    if embedding_dim % 2 == 1:  # zero pad
        emb = torch.nn.functional.pad(emb, (0,1,0,0))
    return emb


def Normalize(in_channels, num_groups=32):
    return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)


class Upsample(nn.Module):
    def __init__(self, in_channels, with_conv):
        super().__init__()
        self.with_conv = with_conv
        if self.with_conv:
            self.conv = torch.nn.Conv2d(in_channels,
                                        in_channels,
                                        kernel_size=3,
                                        stride=1,
                                        padding=1)

    def forward(self, x):
        cpu_m1_cond = True if hasattr(torch.backends, 'mps') and torch.backends.mps.is_available() and \
                              x.size()[0] * x.size()[1] * x.size()[2] * x.size()[3] % 2**27 == 0 else False
        if cpu_m1_cond:
            x = x.to('cpu')  # send to cpu
        x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
        if self.with_conv:
            x = self.conv(x)
        if cpu_m1_cond:
            x = x.to('mps')  # return to mps
        return x


class Downsample(nn.Module):
    def __init__(self, in_channels, with_conv):
        super().__init__()
        self.with_conv = with_conv
        if self.with_conv:
            # no asymmetric padding in torch conv, must do it ourselves
            self.conv = torch.nn.Conv2d(in_channels,
                                        in_channels,
                                        kernel_size=3,
                                        stride=2,
                                        padding=0)

    def forward(self, x):
        if self.with_conv:
            pad = (0,1,0,1)
            x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
            x = self.conv(x)
        else:
            x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
        return x


class ResnetBlock(nn.Module):
    def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
                 dropout, temb_channels=512):
        super().__init__()
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut

        self.norm1 = Normalize(in_channels)
        self.conv1 = torch.nn.Conv2d(in_channels,
                                     out_channels,
                                     kernel_size=3,
                                     stride=1,
                                     padding=1)
        if temb_channels > 0:
            self.temb_proj = torch.nn.Linear(temb_channels,
                                             out_channels)
        self.norm2 = Normalize(out_channels)
        self.dropout = torch.nn.Dropout(dropout)
        self.conv2 = torch.nn.Conv2d(out_channels,
                                     out_channels,
                                     kernel_size=3,
                                     stride=1,
                                     padding=1)
        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                self.conv_shortcut = torch.nn.Conv2d(in_channels,
                                                     out_channels,
                                                     kernel_size=3,
                                                     stride=1,
                                                     padding=1)
            else:
                self.nin_shortcut = torch.nn.Conv2d(in_channels,
                                                    out_channels,
                                                    kernel_size=1,
                                                    stride=1,
                                                    padding=0)

    def forward(self, x, temb):
        if hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
            x_size = x.size()
            if (x_size[0] * x_size[1] * x_size[2] * x_size[3]) % 2**29 == 0:
                self.to('cpu')
                x = x.to('cpu')
            else:
                self.to('mps')
                x = x.to('mps')
        h = self.norm1(x)
        h = silu(h)
        h = self.conv1(h)

        if temb is not None:
            h = h + self.temb_proj(silu(temb))[:,:,None,None]

        h = self.norm2(h)
        h = silu(h)
        h = self.dropout(h)
        h = self.conv2(h)

        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                x = self.conv_shortcut(x)
            else:
                x = self.nin_shortcut(x)

        return x + h

class LinAttnBlock(LinearAttention):
    """to match AttnBlock usage"""
    def __init__(self, in_channels):
        super().__init__(dim=in_channels, heads=1, dim_head=in_channels)


class AttnBlock(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.in_channels = in_channels

        self.norm = Normalize(in_channels)
        self.q = torch.nn.Conv2d(in_channels,
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
        self.k = torch.nn.Conv2d(in_channels,
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
        self.v = torch.nn.Conv2d(in_channels,
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
        self.proj_out = torch.nn.Conv2d(in_channels,
                                        in_channels,
                                        kernel_size=1,
                                        stride=1,
                                        padding=0)


    def forward(self, x):
        h_ = x
        h_ = self.norm(h_)
        q1 = self.q(h_)
        k1 = self.k(h_)
        v = self.v(h_)

        # compute attention
        b, c, h, w = q1.shape

        q2 = q1.reshape(b, c, h*w)
        del q1

        q = q2.permute(0, 2, 1)   # b,hw,c
        del q2

        k = k1.reshape(b, c, h*w) # b,c,hw
        del k1

        h_ = torch.zeros_like(k, device=q.device)

        if q.device.type == 'cuda':
            stats = torch.cuda.memory_stats(q.device)
            mem_active = stats['active_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
            mem_free_torch = mem_reserved - mem_active
            mem_free_total = mem_free_cuda + mem_free_torch

            tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * 4
            mem_required = tensor_size * 2.5
            steps = 1

            if mem_required > mem_free_total:
                steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
            
            slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]

        else:
            if psutil.virtual_memory().available / (1024**3) < 12:
                slice_size = 1
            else:
                slice_size = min(q.shape[1], math.floor(2**30 / (q.shape[0] * q.shape[1])))
        
        for i in range(0, q.shape[1], slice_size):
            end = i + slice_size

            w1 = torch.bmm(q[:, i:end], k)     # b,hw,hw    w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
            w2 = w1 * (int(c)**(-0.5))
            del w1
            w3 = torch.nn.functional.softmax(w2, dim=2)
            del w2

            # attend to values
            v1 = v.reshape(b, c, h*w)
            w4 = w3.permute(0, 2, 1)   # b,hw,hw (first hw of k, second of q)
            del w3

            h_[:, :, i:end] = torch.bmm(v1, w4)     # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
            del v1, w4

        h2 = h_.reshape(b, c, h, w)
        del h_

        h3 = self.proj_out(h2)
        del h2

        h3 += x

        return h3


def make_attn(in_channels, attn_type="vanilla"):
    assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
    print(f"   | Making attention of type '{attn_type}' with {in_channels} in_channels")
    if attn_type == "vanilla":
        return AttnBlock(in_channels)
    elif attn_type == "none":
        return nn.Identity(in_channels)
    else:
        return LinAttnBlock(in_channels)


class Model(nn.Module):
    def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
                 attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
                 resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
        super().__init__()
        if use_linear_attn: attn_type = "linear"
        self.ch = ch
        self.temb_ch = self.ch*4
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_channels = in_channels

        self.use_timestep = use_timestep
        if self.use_timestep:
            # timestep embedding
            self.temb = nn.Module()
            self.temb.dense = nn.ModuleList([
                torch.nn.Linear(self.ch,
                                self.temb_ch),
                torch.nn.Linear(self.temb_ch,
                                self.temb_ch),
            ])

        # downsampling
        self.conv_in = torch.nn.Conv2d(in_channels,
                                       self.ch,
                                       kernel_size=3,
                                       stride=1,
                                       padding=1)

        curr_res = resolution
        in_ch_mult = (1,)+tuple(ch_mult)
        self.down = nn.ModuleList()
        for i_level in range(self.num_resolutions):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_in = ch*in_ch_mult[i_level]
            block_out = ch*ch_mult[i_level]
            for i_block in range(self.num_res_blocks):
                block.append(ResnetBlock(in_channels=block_in,
                                         out_channels=block_out,
                                         temb_channels=self.temb_ch,
                                         dropout=dropout))
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(make_attn(block_in, attn_type=attn_type))
            down = nn.Module()
            down.block = block
            down.attn = attn
            if i_level != self.num_resolutions-1:
                down.downsample = Downsample(block_in, resamp_with_conv)
                curr_res = curr_res // 2
            self.down.append(down)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)
        self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
        self.mid.block_2 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)

        # upsampling
        self.up = nn.ModuleList()
        for i_level in reversed(range(self.num_resolutions)):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_out = ch*ch_mult[i_level]
            skip_in = ch*ch_mult[i_level]
            for i_block in range(self.num_res_blocks+1):
                if i_block == self.num_res_blocks:
                    skip_in = ch*in_ch_mult[i_level]
                block.append(ResnetBlock(in_channels=block_in+skip_in,
                                         out_channels=block_out,
                                         temb_channels=self.temb_ch,
                                         dropout=dropout))
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(make_attn(block_in, attn_type=attn_type))
            up = nn.Module()
            up.block = block
            up.attn = attn
            if i_level != 0:
                up.upsample = Upsample(block_in, resamp_with_conv)
                curr_res = curr_res * 2
            self.up.insert(0, up) # prepend to get consistent order

        # end
        self.norm_out = Normalize(block_in)
        self.conv_out = torch.nn.Conv2d(block_in,
                                        out_ch,
                                        kernel_size=3,
                                        stride=1,
                                        padding=1)

    def forward(self, x, t=None, context=None):
        #assert x.shape[2] == x.shape[3] == self.resolution
        if context is not None:
            # assume aligned context, cat along channel axis
            x = torch.cat((x, context), dim=1)
        if self.use_timestep:
            # timestep embedding
            assert t is not None
            temb = get_timestep_embedding(t, self.ch)
            temb = self.temb.dense[0](temb)
            temb = silu(temb)
            temb = self.temb.dense[1](temb)
        else:
            temb = None

        # downsampling
        hs = [self.conv_in(x)]
        for i_level in range(self.num_resolutions):
            for i_block in range(self.num_res_blocks):
                h = self.down[i_level].block[i_block](hs[-1], temb)
                if len(self.down[i_level].attn) > 0:
                    h = self.down[i_level].attn[i_block](h)
                hs.append(h)
            if i_level != self.num_resolutions-1:
                hs.append(self.down[i_level].downsample(hs[-1]))

        # middle
        h = hs[-1]
        h = self.mid.block_1(h, temb)
        h = self.mid.attn_1(h)
        h = self.mid.block_2(h, temb)

        # upsampling
        for i_level in reversed(range(self.num_resolutions)):
            for i_block in range(self.num_res_blocks+1):
                h = self.up[i_level].block[i_block](
                    torch.cat([h, hs.pop()], dim=1), temb)
                if len(self.up[i_level].attn) > 0:
                    h = self.up[i_level].attn[i_block](h)
            if i_level != 0:
                h = self.up[i_level].upsample(h)

        # end
        h = self.norm_out(h)
        h = silu(h)
        h = self.conv_out(h)
        return h

    def get_last_layer(self):
        return self.conv_out.weight


class Encoder(nn.Module):
    def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
                 attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
                 resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
                 **ignore_kwargs):
        super().__init__()
        if use_linear_attn: attn_type = "linear"
        self.ch = ch
        self.temb_ch = 0
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_channels = in_channels

        # downsampling
        self.conv_in = torch.nn.Conv2d(in_channels,
                                       self.ch,
                                       kernel_size=3,
                                       stride=1,
                                       padding=1)

        curr_res = resolution
        in_ch_mult = (1,)+tuple(ch_mult)
        self.in_ch_mult = in_ch_mult
        self.down = nn.ModuleList()
        for i_level in range(self.num_resolutions):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_in = ch*in_ch_mult[i_level]
            block_out = ch*ch_mult[i_level]
            for i_block in range(self.num_res_blocks):
                block.append(ResnetBlock(in_channels=block_in,
                                         out_channels=block_out,
                                         temb_channels=self.temb_ch,
                                         dropout=dropout))
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(make_attn(block_in, attn_type=attn_type))
            down = nn.Module()
            down.block = block
            down.attn = attn
            if i_level != self.num_resolutions-1:
                down.downsample = Downsample(block_in, resamp_with_conv)
                curr_res = curr_res // 2
            self.down.append(down)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)
        self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
        self.mid.block_2 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)

        # end
        self.norm_out = Normalize(block_in)
        self.conv_out = torch.nn.Conv2d(block_in,
                                        2*z_channels if double_z else z_channels,
                                        kernel_size=3,
                                        stride=1,
                                        padding=1)

    def forward(self, x):
        # timestep embedding
        temb = None

        # downsampling
        hs = [self.conv_in(x)]
        for i_level in range(self.num_resolutions):
            for i_block in range(self.num_res_blocks):
                h = self.down[i_level].block[i_block](hs[-1], temb)
                if len(self.down[i_level].attn) > 0:
                    h = self.down[i_level].attn[i_block](h)
                hs.append(h)
            if i_level != self.num_resolutions-1:
                hs.append(self.down[i_level].downsample(hs[-1]))

        # middle
        h = hs[-1]
        h = self.mid.block_1(h, temb)
        h = self.mid.attn_1(h)
        h = self.mid.block_2(h, temb)

        # end
        h = self.norm_out(h)
        h = silu(h)
        h = self.conv_out(h)
        return h


class Decoder(nn.Module):
    def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
                 attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
                 resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
                 attn_type="vanilla", **ignorekwargs):
        super().__init__()
        if use_linear_attn: attn_type = "linear"
        self.ch = ch
        self.temb_ch = 0
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_channels = in_channels
        self.give_pre_end = give_pre_end
        self.tanh_out = tanh_out

        # compute in_ch_mult, block_in and curr_res at lowest res
        in_ch_mult = (1,)+tuple(ch_mult)
        block_in = ch*ch_mult[self.num_resolutions-1]
        curr_res = resolution // 2**(self.num_resolutions-1)
        self.z_shape = (1,z_channels,curr_res,curr_res)
        print("   | Working with z of shape {} = {} dimensions.".format(
            self.z_shape, np.prod(self.z_shape)))

        # z to block_in
        self.conv_in = torch.nn.Conv2d(z_channels,
                                       block_in,
                                       kernel_size=3,
                                       stride=1,
                                       padding=1)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)
        self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
        self.mid.block_2 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)

        # upsampling
        self.up = nn.ModuleList()
        for i_level in reversed(range(self.num_resolutions)):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_out = ch*ch_mult[i_level]
            for i_block in range(self.num_res_blocks+1):
                block.append(ResnetBlock(in_channels=block_in,
                                         out_channels=block_out,
                                         temb_channels=self.temb_ch,
                                         dropout=dropout))
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(make_attn(block_in, attn_type=attn_type))
            up = nn.Module()
            up.block = block
            up.attn = attn
            if i_level != 0:
                up.upsample = Upsample(block_in, resamp_with_conv)
                curr_res = curr_res * 2
            self.up.insert(0, up) # prepend to get consistent order

        # end
        self.norm_out = Normalize(block_in)
        self.conv_out = torch.nn.Conv2d(block_in,
                                        out_ch,
                                        kernel_size=3,
                                        stride=1,
                                        padding=1)

    def forward(self, z):
        #assert z.shape[1:] == self.z_shape[1:]
        self.last_z_shape = z.shape

        # timestep embedding
        temb = None

        # z to block_in
        h = self.conv_in(z)

        # middle
        h = self.mid.block_1(h, temb)
        h = self.mid.attn_1(h)
        h = self.mid.block_2(h, temb)

        # prepare for up sampling
        gc.collect()
        if h.device.type == 'cuda':
            torch.cuda.empty_cache()

        # upsampling
        for i_level in reversed(range(self.num_resolutions)):
            for i_block in range(self.num_res_blocks+1):
                h = self.up[i_level].block[i_block](h, temb)
                if len(self.up[i_level].attn) > 0:
                    h = self.up[i_level].attn[i_block](h)
            if i_level != 0:
                h = self.up[i_level].upsample(h)

        # end
        if self.give_pre_end:
            return h

        h = self.norm_out(h)
        h = silu(h)
        h = self.conv_out(h)
        if self.tanh_out:
            h = torch.tanh(h)
        return h


class SimpleDecoder(nn.Module):
    def __init__(self, in_channels, out_channels, *args, **kwargs):
        super().__init__()
        self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
                                     ResnetBlock(in_channels=in_channels,
                                                 out_channels=2 * in_channels,
                                                 temb_channels=0, dropout=0.0),
                                     ResnetBlock(in_channels=2 * in_channels,
                                                out_channels=4 * in_channels,
                                                temb_channels=0, dropout=0.0),
                                     ResnetBlock(in_channels=4 * in_channels,
                                                out_channels=2 * in_channels,
                                                temb_channels=0, dropout=0.0),
                                     nn.Conv2d(2*in_channels, in_channels, 1),
                                     Upsample(in_channels, with_conv=True)])
        # end
        self.norm_out = Normalize(in_channels)
        self.conv_out = torch.nn.Conv2d(in_channels,
                                        out_channels,
                                        kernel_size=3,
                                        stride=1,
                                        padding=1)

    def forward(self, x):
        for i, layer in enumerate(self.model):
            if i in [1,2,3]:
                x = layer(x, None)
            else:
                x = layer(x)

        h = self.norm_out(x)
        h = silu(h)
        x = self.conv_out(h)
        return x


class UpsampleDecoder(nn.Module):
    def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
                 ch_mult=(2,2), dropout=0.0):
        super().__init__()
        # upsampling
        self.temb_ch = 0
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        block_in = in_channels
        curr_res = resolution // 2 ** (self.num_resolutions - 1)
        self.res_blocks = nn.ModuleList()
        self.upsample_blocks = nn.ModuleList()
        for i_level in range(self.num_resolutions):
            res_block = []
            block_out = ch * ch_mult[i_level]
            for i_block in range(self.num_res_blocks + 1):
                res_block.append(ResnetBlock(in_channels=block_in,
                                         out_channels=block_out,
                                         temb_channels=self.temb_ch,
                                         dropout=dropout))
                block_in = block_out
            self.res_blocks.append(nn.ModuleList(res_block))
            if i_level != self.num_resolutions - 1:
                self.upsample_blocks.append(Upsample(block_in, True))
                curr_res = curr_res * 2

        # end
        self.norm_out = Normalize(block_in)
        self.conv_out = torch.nn.Conv2d(block_in,
                                        out_channels,
                                        kernel_size=3,
                                        stride=1,
                                        padding=1)

    def forward(self, x):
        # upsampling
        h = x
        for k, i_level in enumerate(range(self.num_resolutions)):
            for i_block in range(self.num_res_blocks + 1):
                h = self.res_blocks[i_level][i_block](h, None)
            if i_level != self.num_resolutions - 1:
                h = self.upsample_blocks[k](h)
        h = self.norm_out(h)
        h = silu(h)
        h = self.conv_out(h)
        return h


class LatentRescaler(nn.Module):
    def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
        super().__init__()
        # residual block, interpolate, residual block
        self.factor = factor
        self.conv_in = nn.Conv2d(in_channels,
                                 mid_channels,
                                 kernel_size=3,
                                 stride=1,
                                 padding=1)
        self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
                                                     out_channels=mid_channels,
                                                     temb_channels=0,
                                                     dropout=0.0) for _ in range(depth)])
        self.attn = AttnBlock(mid_channels)
        self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
                                                     out_channels=mid_channels,
                                                     temb_channels=0,
                                                     dropout=0.0) for _ in range(depth)])

        self.conv_out = nn.Conv2d(mid_channels,
                                  out_channels,
                                  kernel_size=1,
                                  )

    def forward(self, x):
        x = self.conv_in(x)
        for block in self.res_block1:
            x = block(x, None)
        x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
        x = self.attn(x)
        for block in self.res_block2:
            x = block(x, None)
        x = self.conv_out(x)
        return x


class MergedRescaleEncoder(nn.Module):
    def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
                 attn_resolutions, dropout=0.0, resamp_with_conv=True,
                 ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
        super().__init__()
        intermediate_chn = ch * ch_mult[-1]
        self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
                               z_channels=intermediate_chn, double_z=False, resolution=resolution,
                               attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
                               out_ch=None)
        self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
                                       mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)

    def forward(self, x):
        x = self.encoder(x)
        x = self.rescaler(x)
        return x


class MergedRescaleDecoder(nn.Module):
    def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
                 dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
        super().__init__()
        tmp_chn = z_channels*ch_mult[-1]
        self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
                               resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
                               ch_mult=ch_mult, resolution=resolution, ch=ch)
        self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
                                       out_channels=tmp_chn, depth=rescale_module_depth)

    def forward(self, x):
        x = self.rescaler(x)
        x = self.decoder(x)
        return x


class Upsampler(nn.Module):
    def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
        super().__init__()
        assert out_size >= in_size
        num_blocks = int(np.log2(out_size//in_size))+1
        factor_up = 1.+ (out_size % in_size)
        print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
        self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
                                       out_channels=in_channels)
        self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
                               attn_resolutions=[], in_channels=None, ch=in_channels,
                               ch_mult=[ch_mult for _ in range(num_blocks)])

    def forward(self, x):
        x = self.rescaler(x)
        x = self.decoder(x)
        return x


class Resize(nn.Module):
    def __init__(self, in_channels=None, learned=False, mode="bilinear"):
        super().__init__()
        self.with_conv = learned
        self.mode = mode
        if self.with_conv:
            print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
            raise NotImplementedError()
            assert in_channels is not None
            # no asymmetric padding in torch conv, must do it ourselves
            self.conv = torch.nn.Conv2d(in_channels,
                                        in_channels,
                                        kernel_size=4,
                                        stride=2,
                                        padding=1)

    def forward(self, x, scale_factor=1.0):
        if scale_factor==1.0:
            return x
        else:
            x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
        return x

class FirstStagePostProcessor(nn.Module):

    def __init__(self, ch_mult:list, in_channels,
                 pretrained_model:nn.Module=None,
                 reshape=False,
                 n_channels=None,
                 dropout=0.,
                 pretrained_config=None):
        super().__init__()
        if pretrained_config is None:
            assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
            self.pretrained_model = pretrained_model
        else:
            assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
            self.instantiate_pretrained(pretrained_config)

        self.do_reshape = reshape

        if n_channels is None:
            n_channels = self.pretrained_model.encoder.ch

        self.proj_norm = Normalize(in_channels,num_groups=in_channels//2)
        self.proj = nn.Conv2d(in_channels,n_channels,kernel_size=3,
                            stride=1,padding=1)

        blocks = []
        downs = []
        ch_in = n_channels
        for m in ch_mult:
            blocks.append(ResnetBlock(in_channels=ch_in,out_channels=m*n_channels,dropout=dropout))
            ch_in = m * n_channels
            downs.append(Downsample(ch_in, with_conv=False))

        self.model = nn.ModuleList(blocks)
        self.downsampler = nn.ModuleList(downs)


    def instantiate_pretrained(self, config):
        model = instantiate_from_config(config)
        self.pretrained_model = model.eval()
        # self.pretrained_model.train = False
        for param in self.pretrained_model.parameters():
            param.requires_grad = False


    @torch.no_grad()
    def encode_with_pretrained(self,x):
        c = self.pretrained_model.encode(x)
        if isinstance(c, DiagonalGaussianDistribution):
            c = c.mode()
        return  c

    def forward(self,x):
        z_fs = self.encode_with_pretrained(x)
        z = self.proj_norm(z_fs)
        z = self.proj(z)
        z = silu(z)

        for submodel, downmodel in zip(self.model,self.downsampler):
            z = submodel(z,temb=None)
            z = downmodel(z)

        if self.do_reshape:
            z = rearrange(z,'b c h w -> b (h w) c')
        return z