import argparse, os, sys, datetime, glob, importlib, csv
import numpy as np
import time
import torch

import torchvision
import pytorch_lightning as pl

from packaging import version
from omegaconf import OmegaConf
from torch.utils.data import random_split, DataLoader, Dataset, Subset
from functools import partial
from PIL import Image

from pytorch_lightning import seed_everything
from pytorch_lightning.trainer import Trainer
from pytorch_lightning.callbacks import (
    ModelCheckpoint,
    Callback,
    LearningRateMonitor,
)
from pytorch_lightning.utilities.distributed import rank_zero_only
from pytorch_lightning.utilities import rank_zero_info

from ldm.data.base import Txt2ImgIterableBaseDataset
from ldm.util import instantiate_from_config

def fix_func(orig):
    if hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
        def new_func(*args, **kw):
            device = kw.get("device", "mps")
            kw["device"]="cpu"
            return orig(*args, **kw).to(device)
        return new_func
    return orig

torch.rand = fix_func(torch.rand)
torch.rand_like = fix_func(torch.rand_like)
torch.randn = fix_func(torch.randn)
torch.randn_like = fix_func(torch.randn_like)
torch.randint = fix_func(torch.randint)
torch.randint_like = fix_func(torch.randint_like)
torch.bernoulli = fix_func(torch.bernoulli)
torch.multinomial = fix_func(torch.multinomial)

def load_model_from_config(config, ckpt, verbose=False):
    print(f'Loading model from {ckpt}')
    pl_sd = torch.load(ckpt, map_location='cpu')
    sd = pl_sd['state_dict']
    config.model.params.ckpt_path = ckpt
    model = instantiate_from_config(config.model)
    m, u = model.load_state_dict(sd, strict=False)
    if len(m) > 0 and verbose:
        print('missing keys:')
        print(m)
    if len(u) > 0 and verbose:
        print('unexpected keys:')
        print(u)

    if torch.cuda.is_available():
        model.cuda()
    return model


def get_parser(**parser_kwargs):
    def str2bool(v):
        if isinstance(v, bool):
            return v
        if v.lower() in ('yes', 'true', 't', 'y', '1'):
            return True
        elif v.lower() in ('no', 'false', 'f', 'n', '0'):
            return False
        else:
            raise argparse.ArgumentTypeError('Boolean value expected.')

    parser = argparse.ArgumentParser(**parser_kwargs)
    parser.add_argument(
        '-n',
        '--name',
        type=str,
        const=True,
        default='',
        nargs='?',
        help='postfix for logdir',
    )
    parser.add_argument(
        '-r',
        '--resume',
        type=str,
        const=True,
        default='',
        nargs='?',
        help='resume from logdir or checkpoint in logdir',
    )
    parser.add_argument(
        '-b',
        '--base',
        nargs='*',
        metavar='base_config.yaml',
        help='paths to base configs. Loaded from left-to-right. '
        'Parameters can be overwritten or added with command-line options of the form `--key value`.',
        default=list(),
    )
    parser.add_argument(
        '-t',
        '--train',
        type=str2bool,
        const=True,
        default=False,
        nargs='?',
        help='train',
    )
    parser.add_argument(
        '--no-test',
        type=str2bool,
        const=True,
        default=False,
        nargs='?',
        help='disable test',
    )
    parser.add_argument(
        '-p', '--project', help='name of new or path to existing project'
    )
    parser.add_argument(
        '-d',
        '--debug',
        type=str2bool,
        nargs='?',
        const=True,
        default=False,
        help='enable post-mortem debugging',
    )
    parser.add_argument(
        '-s',
        '--seed',
        type=int,
        default=23,
        help='seed for seed_everything',
    )
    parser.add_argument(
        '-f',
        '--postfix',
        type=str,
        default='',
        help='post-postfix for default name',
    )
    parser.add_argument(
        '-l',
        '--logdir',
        type=str,
        default='logs',
        help='directory for logging dat shit',
    )
    parser.add_argument(
        '--scale_lr',
        type=str2bool,
        nargs='?',
        const=True,
        default=True,
        help='scale base-lr by ngpu * batch_size * n_accumulate',
    )

    parser.add_argument(
        '--datadir_in_name',
        type=str2bool,
        nargs='?',
        const=True,
        default=True,
        help='Prepend the final directory in the data_root to the output directory name',
    )

    parser.add_argument(
        '--actual_resume',
        type=str,
        default='',
        help='Path to model to actually resume from',
    )
    parser.add_argument(
        '--data_root',
        type=str,
        required=True,
        help='Path to directory with training images',
    )

    parser.add_argument(
        '--embedding_manager_ckpt',
        type=str,
        default='',
        help='Initialize embedding manager from a checkpoint',
    )
    parser.add_argument(
        '--init_word',
        type=str,
        help='Word to use as source for initial token embedding.',
    )

    return parser


def nondefault_trainer_args(opt):
    parser = argparse.ArgumentParser()
    parser = Trainer.add_argparse_args(parser)
    args = parser.parse_args([])
    return sorted(k for k in vars(args) if getattr(opt, k) != getattr(args, k))


class WrappedDataset(Dataset):
    """Wraps an arbitrary object with __len__ and __getitem__ into a pytorch dataset"""

    def __init__(self, dataset):
        self.data = dataset

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]


def worker_init_fn(_):
    worker_info = torch.utils.data.get_worker_info()

    dataset = worker_info.dataset
    worker_id = worker_info.id

    if isinstance(dataset, Txt2ImgIterableBaseDataset):
        split_size = dataset.num_records // worker_info.num_workers
        # reset num_records to the true number to retain reliable length information
        dataset.sample_ids = dataset.valid_ids[
            worker_id * split_size : (worker_id + 1) * split_size
        ]
        current_id = np.random.choice(len(np.random.get_state()[1]), 1)
        return np.random.seed(np.random.get_state()[1][current_id] + worker_id)
    else:
        return np.random.seed(np.random.get_state()[1][0] + worker_id)


class DataModuleFromConfig(pl.LightningDataModule):
    def __init__(
        self,
        batch_size,
        train=None,
        validation=None,
        test=None,
        predict=None,
        wrap=False,
        num_workers=None,
        shuffle_test_loader=False,
        use_worker_init_fn=False,
        shuffle_val_dataloader=False,
    ):
        super().__init__()
        self.batch_size = batch_size
        self.dataset_configs = dict()
        self.num_workers = (
            num_workers if num_workers is not None else batch_size * 2
        )
        self.use_worker_init_fn = use_worker_init_fn
        if train is not None:
            self.dataset_configs['train'] = train
            self.train_dataloader = self._train_dataloader
        if validation is not None:
            self.dataset_configs['validation'] = validation
            self.val_dataloader = partial(
                self._val_dataloader, shuffle=shuffle_val_dataloader
            )
        if test is not None:
            self.dataset_configs['test'] = test
            self.test_dataloader = partial(
                self._test_dataloader, shuffle=shuffle_test_loader
            )
        if predict is not None:
            self.dataset_configs['predict'] = predict
            self.predict_dataloader = self._predict_dataloader
        self.wrap = wrap

    def prepare_data(self):
        for data_cfg in self.dataset_configs.values():
            instantiate_from_config(data_cfg)

    def setup(self, stage=None):
        self.datasets = dict(
            (k, instantiate_from_config(self.dataset_configs[k]))
            for k in self.dataset_configs
        )
        if self.wrap:
            for k in self.datasets:
                self.datasets[k] = WrappedDataset(self.datasets[k])

    def _train_dataloader(self):
        is_iterable_dataset = isinstance(
            self.datasets['train'], Txt2ImgIterableBaseDataset
        )
        if is_iterable_dataset or self.use_worker_init_fn:
            init_fn = worker_init_fn
        else:
            init_fn = None
        return DataLoader(
            self.datasets['train'],
            batch_size=self.batch_size,
            num_workers=self.num_workers,
            shuffle=False if is_iterable_dataset else True,
            worker_init_fn=init_fn,
        )

    def _val_dataloader(self, shuffle=False):
        if (
            isinstance(self.datasets['validation'], Txt2ImgIterableBaseDataset)
            or self.use_worker_init_fn
        ):
            init_fn = worker_init_fn
        else:
            init_fn = None
        return DataLoader(
            self.datasets['validation'],
            batch_size=self.batch_size,
            num_workers=self.num_workers,
            worker_init_fn=init_fn,
            shuffle=shuffle,
        )

    def _test_dataloader(self, shuffle=False):
        is_iterable_dataset = isinstance(
            self.datasets['train'], Txt2ImgIterableBaseDataset
        )
        if is_iterable_dataset or self.use_worker_init_fn:
            init_fn = worker_init_fn
        else:
            init_fn = None

        # do not shuffle dataloader for iterable dataset
        shuffle = shuffle and (not is_iterable_dataset)

        return DataLoader(
            self.datasets['test'],
            batch_size=self.batch_size,
            num_workers=self.num_workers,
            worker_init_fn=init_fn,
            shuffle=shuffle,
        )

    def _predict_dataloader(self, shuffle=False):
        if (
            isinstance(self.datasets['predict'], Txt2ImgIterableBaseDataset)
            or self.use_worker_init_fn
        ):
            init_fn = worker_init_fn
        else:
            init_fn = None
        return DataLoader(
            self.datasets['predict'],
            batch_size=self.batch_size,
            num_workers=self.num_workers,
            worker_init_fn=init_fn,
        )


class SetupCallback(Callback):
    def __init__(
        self, resume, now, logdir, ckptdir, cfgdir, config, lightning_config
    ):
        super().__init__()
        self.resume = resume
        self.now = now
        self.logdir = logdir
        self.ckptdir = ckptdir
        self.cfgdir = cfgdir
        self.config = config
        self.lightning_config = lightning_config

    def on_keyboard_interrupt(self, trainer, pl_module):
        if trainer.global_rank == 0:
            print('Summoning checkpoint.')
            ckpt_path = os.path.join(self.ckptdir, 'last.ckpt')
            trainer.save_checkpoint(ckpt_path)

    def on_pretrain_routine_start(self, trainer, pl_module):
        if trainer.global_rank == 0:
            # Create logdirs and save configs
            os.makedirs(self.logdir, exist_ok=True)
            os.makedirs(self.ckptdir, exist_ok=True)
            os.makedirs(self.cfgdir, exist_ok=True)

            if 'callbacks' in self.lightning_config:
                if (
                    'metrics_over_trainsteps_checkpoint'
                    in self.lightning_config['callbacks']
                ):
                    os.makedirs(
                        os.path.join(self.ckptdir, 'trainstep_checkpoints'),
                        exist_ok=True,
                    )
            print('Project config')
            print(OmegaConf.to_yaml(self.config))
            OmegaConf.save(
                self.config,
                os.path.join(self.cfgdir, '{}-project.yaml'.format(self.now)),
            )

            print('Lightning config')
            print(OmegaConf.to_yaml(self.lightning_config))
            OmegaConf.save(
                OmegaConf.create({'lightning': self.lightning_config}),
                os.path.join(
                    self.cfgdir, '{}-lightning.yaml'.format(self.now)
                ),
            )

        else:
            # ModelCheckpoint callback created log directory --- remove it
            if not self.resume and os.path.exists(self.logdir):
                dst, name = os.path.split(self.logdir)
                dst = os.path.join(dst, 'child_runs', name)
                os.makedirs(os.path.split(dst)[0], exist_ok=True)
                try:
                    os.rename(self.logdir, dst)
                except FileNotFoundError:
                    pass


class ImageLogger(Callback):
    def __init__(
        self,
        batch_frequency,
        max_images,
        clamp=True,
        increase_log_steps=True,
        rescale=True,
        disabled=False,
        log_on_batch_idx=False,
        log_first_step=False,
        log_images_kwargs=None,
    ):
        super().__init__()
        self.rescale = rescale
        self.batch_freq = batch_frequency
        self.max_images = max_images
        self.logger_log_images = { }
        self.log_steps = [
            2**n for n in range(int(np.log2(self.batch_freq)) + 1)
        ]
        if not increase_log_steps:
            self.log_steps = [self.batch_freq]
        self.clamp = clamp
        self.disabled = disabled
        self.log_on_batch_idx = log_on_batch_idx
        self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}
        self.log_first_step = log_first_step

    @rank_zero_only
    def log_local(
        self, save_dir, split, images, global_step, current_epoch, batch_idx
    ):
        root = os.path.join(save_dir, 'images', split)
        for k in images:
            grid = torchvision.utils.make_grid(images[k], nrow=4)
            if self.rescale:
                grid = (grid + 1.0) / 2.0  # -1,1 -> 0,1; c,h,w
            grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
            grid = grid.numpy()
            grid = (grid * 255).astype(np.uint8)
            filename = '{}_gs-{:06}_e-{:06}_b-{:06}.png'.format(
                k, global_step, current_epoch, batch_idx
            )
            path = os.path.join(root, filename)
            os.makedirs(os.path.split(path)[0], exist_ok=True)
            Image.fromarray(grid).save(path)

    def log_img(self, pl_module, batch, batch_idx, split='train'):
        check_idx = (
            batch_idx if self.log_on_batch_idx else pl_module.global_step
        )
        if (
            self.check_frequency(check_idx)
            and hasattr(  # batch_idx % self.batch_freq == 0
                pl_module, 'log_images'
            )
            and callable(pl_module.log_images)
            and self.max_images > 0
        ):
            logger = type(pl_module.logger)

            is_train = pl_module.training
            if is_train:
                pl_module.eval()

            with torch.no_grad():
                images = pl_module.log_images(
                    batch, split=split, **self.log_images_kwargs
                )

            for k in images:
                N = min(images[k].shape[0], self.max_images)
                images[k] = images[k][:N]
                if isinstance(images[k], torch.Tensor):
                    images[k] = images[k].detach().cpu()
                    if self.clamp:
                        images[k] = torch.clamp(images[k], -1.0, 1.0)

            self.log_local(
                pl_module.logger.save_dir,
                split,
                images,
                pl_module.global_step,
                pl_module.current_epoch,
                batch_idx,
            )

            logger_log_images = self.logger_log_images.get(
                logger, lambda *args, **kwargs: None
            )
            logger_log_images(pl_module, images, pl_module.global_step, split)

            if is_train:
                pl_module.train()

    def check_frequency(self, check_idx):
        if (
            (check_idx % self.batch_freq) == 0 or (check_idx in self.log_steps)
        ) and (check_idx > 0 or self.log_first_step):
            try:
                self.log_steps.pop(0)
            except IndexError as e:
                print(e)
                pass
            return True
        return False

    def on_train_batch_end(
        self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx=None
    ):
        if not self.disabled and (
            pl_module.global_step > 0 or self.log_first_step
        ):
            self.log_img(pl_module, batch, batch_idx, split='train')

    def on_validation_batch_end(
        self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx=None
    ):
        if not self.disabled and pl_module.global_step > 0:
            self.log_img(pl_module, batch, batch_idx, split='val')
        if hasattr(pl_module, 'calibrate_grad_norm'):
            if (
                pl_module.calibrate_grad_norm and batch_idx % 25 == 0
            ) and batch_idx > 0:
                self.log_gradients(trainer, pl_module, batch_idx=batch_idx)


class CUDACallback(Callback):
    # see https://github.com/SeanNaren/minGPT/blob/master/mingpt/callback.py
    def on_train_epoch_start(self, trainer, pl_module):
        # Reset the memory use counter
        if torch.cuda.is_available():
            torch.cuda.reset_peak_memory_stats(trainer.root_gpu)
            torch.cuda.synchronize(trainer.root_gpu)
        self.start_time = time.time()

    def on_train_epoch_end(self, trainer, pl_module, outputs=None):
        if torch.cuda.is_available():
            torch.cuda.synchronize(trainer.root_gpu)
        epoch_time = time.time() - self.start_time

        try:
            epoch_time = trainer.training_type_plugin.reduce(epoch_time)
            rank_zero_info(f'Average Epoch time: {epoch_time:.2f} seconds')

            if torch.cuda.is_available():
                max_memory = (
                    torch.cuda.max_memory_allocated(trainer.root_gpu) / 2**20
                )
                max_memory = trainer.training_type_plugin.reduce(max_memory)
                rank_zero_info(f'Average Peak memory {max_memory:.2f}MiB')
        except AttributeError:
            pass

class ModeSwapCallback(Callback):

    def __init__(self, swap_step=2000):
        super().__init__()
        self.is_frozen = False
        self.swap_step = swap_step

    def on_train_epoch_start(self, trainer, pl_module):
        if trainer.global_step < self.swap_step and not self.is_frozen:
            self.is_frozen = True
            trainer.optimizers = [pl_module.configure_opt_embedding()]

        if trainer.global_step > self.swap_step and self.is_frozen:
            self.is_frozen = False
            trainer.optimizers = [pl_module.configure_opt_model()]

if __name__ == '__main__':
    # custom parser to specify config files, train, test and debug mode,
    # postfix, resume.
    # `--key value` arguments are interpreted as arguments to the trainer.
    # `nested.key=value` arguments are interpreted as config parameters.
    # configs are merged from left-to-right followed by command line parameters.

    # model:
    #   base_learning_rate: float
    #   target: path to lightning module
    #   params:
    #       key: value
    # data:
    #   target: main.DataModuleFromConfig
    #   params:
    #      batch_size: int
    #      wrap: bool
    #      train:
    #          target: path to train dataset
    #          params:
    #              key: value
    #      validation:
    #          target: path to validation dataset
    #          params:
    #              key: value
    #      test:
    #          target: path to test dataset
    #          params:
    #              key: value
    # lightning: (optional, has sane defaults and can be specified on cmdline)
    #   trainer:
    #       additional arguments to trainer
    #   logger:
    #       logger to instantiate
    #   modelcheckpoint:
    #       modelcheckpoint to instantiate
    #   callbacks:
    #       callback1:
    #           target: importpath
    #           params:
    #               key: value

    now = datetime.datetime.now().strftime('%Y-%m-%dT%H-%M-%S')

    # add cwd for convenience and to make classes in this file available when
    # running as `python main.py`
    # (in particular `main.DataModuleFromConfig`)
    sys.path.append(os.getcwd())

    parser = get_parser()
    parser = Trainer.add_argparse_args(parser)

    opt, unknown = parser.parse_known_args()
    if opt.name and opt.resume:
        raise ValueError(
            '-n/--name and -r/--resume cannot be specified both.'
            'If you want to resume training in a new log folder, '
            'use -n/--name in combination with --resume_from_checkpoint'
        )
    if opt.resume:
        if not os.path.exists(opt.resume):
            raise ValueError('Cannot find {}'.format(opt.resume))
        if os.path.isfile(opt.resume):
            paths = opt.resume.split('/')
            # idx = len(paths)-paths[::-1].index("logs")+1
            # logdir = "/".join(paths[:idx])
            logdir = '/'.join(paths[:-2])
            ckpt = opt.resume
        else:
            assert os.path.isdir(opt.resume), opt.resume
            logdir = opt.resume.rstrip('/')
            ckpt = os.path.join(logdir, 'checkpoints', 'last.ckpt')

        opt.resume_from_checkpoint = ckpt
        base_configs = sorted(
            glob.glob(os.path.join(logdir, 'configs/*.yaml'))
        )
        opt.base = base_configs + opt.base
        _tmp = logdir.split('/')
        nowname = _tmp[-1]
    else:
        if opt.name:
            name = '_' + opt.name
        elif opt.base:
            cfg_fname = os.path.split(opt.base[0])[-1]
            cfg_name = os.path.splitext(cfg_fname)[0]
            name = '_' + cfg_name
        else:
            name = ''

        if opt.datadir_in_name:
            now = os.path.basename(os.path.normpath(opt.data_root)) + now


        nowname = now + name + opt.postfix
        logdir = os.path.join(opt.logdir, nowname)

    ckptdir = os.path.join(logdir, 'checkpoints')
    cfgdir = os.path.join(logdir, 'configs')
    seed_everything(opt.seed)

    try:
        # init and save configs
        configs = [OmegaConf.load(cfg) for cfg in opt.base]
        cli = OmegaConf.from_dotlist(unknown)
        config = OmegaConf.merge(*configs, cli)
        lightning_config = config.pop('lightning', OmegaConf.create())
        # merge trainer cli with config
        trainer_config = lightning_config.get('trainer', OmegaConf.create())
        # default to ddp
        trainer_config['accelerator'] = 'auto'
        for k in nondefault_trainer_args(opt):
            trainer_config[k] = getattr(opt, k)
        if not 'gpus' in trainer_config:
            del trainer_config['accelerator']
            cpu = True
        else:
            gpuinfo = trainer_config['gpus']
            print(f'Running on GPUs {gpuinfo}')
            cpu = False
        trainer_opt = argparse.Namespace(**trainer_config)
        lightning_config.trainer = trainer_config

        # model

        # config.model.params.personalization_config.params.init_word = opt.init_word
        config.model.params.personalization_config.params.embedding_manager_ckpt = (
            opt.embedding_manager_ckpt
        )

        if opt.init_word:
            config.model.params.personalization_config.params.initializer_words = [opt.init_word]

        if opt.actual_resume:
            model = load_model_from_config(config, opt.actual_resume)
        else:
            model = instantiate_from_config(config.model)

        # trainer and callbacks
        trainer_kwargs = dict()

        # default logger configs
        def_logger = 'csv'
        def_logger_target = 'CSVLogger'
        default_logger_cfgs = {
            'wandb': {
                'target': 'pytorch_lightning.loggers.WandbLogger',
                'params': {
                    'name': nowname,
                    'save_dir': logdir,
                    'offline': opt.debug,
                    'id': nowname,
                },
            },
            def_logger: {
                'target': 'pytorch_lightning.loggers.' + def_logger_target,
                'params': {
                    'name': def_logger,
                    'save_dir': logdir,
                },
            },
        }
        default_logger_cfg = default_logger_cfgs[def_logger]
        if 'logger' in lightning_config:
            logger_cfg = lightning_config.logger
        else:
            logger_cfg = OmegaConf.create()
        logger_cfg = OmegaConf.merge(default_logger_cfg, logger_cfg)
        trainer_kwargs['logger'] = instantiate_from_config(logger_cfg)

        # modelcheckpoint - use TrainResult/EvalResult(checkpoint_on=metric) to
        # specify which metric is used to determine best models
        default_modelckpt_cfg = {
            'target': 'pytorch_lightning.callbacks.ModelCheckpoint',
            'params': {
                'dirpath': ckptdir,
                'filename': '{epoch:06}',
                'verbose': True,
                'save_last': True,
            },
        }
        if hasattr(model, 'monitor'):
            print(f'Monitoring {model.monitor} as checkpoint metric.')
            default_modelckpt_cfg['params']['monitor'] = model.monitor
            default_modelckpt_cfg['params']['save_top_k'] = 1

        if 'modelcheckpoint' in lightning_config:
            modelckpt_cfg = lightning_config.modelcheckpoint
        else:
            modelckpt_cfg = OmegaConf.create()
        modelckpt_cfg = OmegaConf.merge(default_modelckpt_cfg, modelckpt_cfg)
        print(f'Merged modelckpt-cfg: \n{modelckpt_cfg}')
        if version.parse(pl.__version__) < version.parse('1.4.0'):
            trainer_kwargs['checkpoint_callback'] = instantiate_from_config(
                modelckpt_cfg
            )

        # add callback which sets up log directory
        default_callbacks_cfg = {
            'setup_callback': {
                'target': 'main.SetupCallback',
                'params': {
                    'resume': opt.resume,
                    'now': now,
                    'logdir': logdir,
                    'ckptdir': ckptdir,
                    'cfgdir': cfgdir,
                    'config': config,
                    'lightning_config': lightning_config,
                },
            },
            'image_logger': {
                'target': 'main.ImageLogger',
                'params': {
                    'batch_frequency': 750,
                    'max_images': 4,
                    'clamp': True,
                },
            },
            'learning_rate_logger': {
                'target': 'main.LearningRateMonitor',
                'params': {
                    'logging_interval': 'step',
                    # "log_momentum": True
                },
            },
            'cuda_callback': {'target': 'main.CUDACallback'},
        }
        if version.parse(pl.__version__) >= version.parse('1.4.0'):
            default_callbacks_cfg.update(
                {'checkpoint_callback': modelckpt_cfg}
            )

        if 'callbacks' in lightning_config:
            callbacks_cfg = lightning_config.callbacks
        else:
            callbacks_cfg = OmegaConf.create()

        if 'metrics_over_trainsteps_checkpoint' in callbacks_cfg:
            print(
                'Caution: Saving checkpoints every n train steps without deleting. This might require some free space.'
            )
            default_metrics_over_trainsteps_ckpt_dict = {
                'metrics_over_trainsteps_checkpoint': {
                    'target': 'pytorch_lightning.callbacks.ModelCheckpoint',
                    'params': {
                        'dirpath': os.path.join(
                            ckptdir, 'trainstep_checkpoints'
                        ),
                        'filename': '{epoch:06}-{step:09}',
                        'verbose': True,
                        'save_top_k': -1,
                        'every_n_train_steps': 10000,
                        'save_weights_only': True,
                    },
                }
            }
            default_callbacks_cfg.update(
                default_metrics_over_trainsteps_ckpt_dict
            )

        callbacks_cfg = OmegaConf.merge(default_callbacks_cfg, callbacks_cfg)
        if 'ignore_keys_callback' in callbacks_cfg and hasattr(
            trainer_opt, 'resume_from_checkpoint'
        ):
            callbacks_cfg.ignore_keys_callback.params[
                'ckpt_path'
            ] = trainer_opt.resume_from_checkpoint
        elif 'ignore_keys_callback' in callbacks_cfg:
            del callbacks_cfg['ignore_keys_callback']

        trainer_kwargs['callbacks'] = [
            instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg
        ]
        trainer_kwargs['max_steps'] = trainer_opt.max_steps

        if hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
            trainer_opt.accelerator = 'mps'
            trainer_opt.detect_anomaly = False

        trainer = Trainer.from_argparse_args(trainer_opt, **trainer_kwargs)
        trainer.logdir = logdir  ###

        # data
        config.data.params.train.params.data_root = opt.data_root
        config.data.params.validation.params.data_root = opt.data_root
        data = instantiate_from_config(config.data)

        # NOTE according to https://pytorch-lightning.readthedocs.io/en/latest/datamodules.html
        # calling these ourselves should not be necessary but it is.
        # lightning still takes care of proper multiprocessing though
        data.prepare_data()
        data.setup()
        print('#### Data #####')
        for k in data.datasets:
            print(
                f'{k}, {data.datasets[k].__class__.__name__}, {len(data.datasets[k])}'
            )

        # configure learning rate
        bs, base_lr = (
            config.data.params.batch_size,
            config.model.base_learning_rate,
        )
        if not cpu:
            gpus = str(lightning_config.trainer.gpus).strip(', ').split(',')
            ngpu = len(gpus)
        else:
            ngpu = 1
        if 'accumulate_grad_batches' in lightning_config.trainer:
            accumulate_grad_batches = (
                lightning_config.trainer.accumulate_grad_batches
            )
        else:
            accumulate_grad_batches = 1
        print(f'accumulate_grad_batches = {accumulate_grad_batches}')
        lightning_config.trainer.accumulate_grad_batches = (
            accumulate_grad_batches
        )
        if opt.scale_lr:
            model.learning_rate = accumulate_grad_batches * ngpu * bs * base_lr
            print(
                'Setting learning rate to {:.2e} = {} (accumulate_grad_batches) * {} (num_gpus) * {} (batchsize) * {:.2e} (base_lr)'.format(
                    model.learning_rate,
                    accumulate_grad_batches,
                    ngpu,
                    bs,
                    base_lr,
                )
            )
        else:
            model.learning_rate = base_lr
            print('++++ NOT USING LR SCALING ++++')
            print(f'Setting learning rate to {model.learning_rate:.2e}')

        # allow checkpointing via USR1
        def melk(*args, **kwargs):
            # run all checkpoint hooks
            if trainer.global_rank == 0:
                print('Summoning checkpoint.')
                ckpt_path = os.path.join(ckptdir, 'last.ckpt')
                trainer.save_checkpoint(ckpt_path)

        def divein(*args, **kwargs):
            if trainer.global_rank == 0:
                import pudb

                pudb.set_trace()

        import signal

        signal.signal(signal.SIGTERM, melk)
        signal.signal(signal.SIGTERM, divein)

        # run
        if opt.train:
            try:
                trainer.fit(model, data)
            except Exception:
                melk()
                raise
        if not opt.no_test and not trainer.interrupted:
            trainer.test(model, data)
    except Exception:
        if opt.debug and trainer.global_rank == 0:
            try:
                import pudb as debugger
            except ImportError:
                import pdb as debugger
            debugger.post_mortem()
        raise
    finally:
        # move newly created debug project to debug_runs
        if opt.debug and not opt.resume and trainer.global_rank == 0:
            dst, name = os.path.split(logdir)
            dst = os.path.join(dst, 'debug_runs', name)
            os.makedirs(os.path.split(dst)[0], exist_ok=True)
            os.rename(logdir, dst)
        # if trainer.global_rank == 0:
        #     print(trainer.profiler.summary())