import math import numpy as np import torch from torch import nn, Tensor import torch.nn.functional as F from typing import Optional, List from ldm.invoke.restoration.vqgan_arch import * from basicsr.utils import get_root_logger from basicsr.utils.registry import ARCH_REGISTRY def calc_mean_std(feat, eps=1e-5): """Calculate mean and std for adaptive_instance_normalization. Args: feat (Tensor): 4D tensor. eps (float): A small value added to the variance to avoid divide-by-zero. Default: 1e-5. """ size = feat.size() assert len(size) == 4, 'The input feature should be 4D tensor.' b, c = size[:2] feat_var = feat.view(b, c, -1).var(dim=2) + eps feat_std = feat_var.sqrt().view(b, c, 1, 1) feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1) return feat_mean, feat_std def adaptive_instance_normalization(content_feat, style_feat): """Adaptive instance normalization. Adjust the reference features to have the similar color and illuminations as those in the degradate features. Args: content_feat (Tensor): The reference feature. style_feat (Tensor): The degradate features. """ size = content_feat.size() style_mean, style_std = calc_mean_std(style_feat) content_mean, content_std = calc_mean_std(content_feat) normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size) return normalized_feat * style_std.expand(size) + style_mean.expand(size) class PositionEmbeddingSine(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): super().__init__() self.num_pos_feats = num_pos_feats self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, x, mask=None): if mask is None: mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) not_mask = ~mask y_embed = not_mask.cumsum(1, dtype=torch.float32) x_embed = not_mask.cumsum(2, dtype=torch.float32) if self.normalize: eps = 1e-6 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack( (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 ).flatten(3) pos_y = torch.stack( (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 ).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos def _get_activation_fn(activation): """Return an activation function given a string""" if activation == "relu": return F.relu if activation == "gelu": return F.gelu if activation == "glu": return F.glu raise RuntimeError(F"activation should be relu/gelu, not {activation}.") class TransformerSALayer(nn.Module): def __init__(self, embed_dim, nhead=8, dim_mlp=2048, dropout=0.0, activation="gelu"): super().__init__() self.self_attn = nn.MultiheadAttention(embed_dim, nhead, dropout=dropout) # Implementation of Feedforward model - MLP self.linear1 = nn.Linear(embed_dim, dim_mlp) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_mlp, embed_dim) self.norm1 = nn.LayerNorm(embed_dim) self.norm2 = nn.LayerNorm(embed_dim) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.activation = _get_activation_fn(activation) def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward(self, tgt, tgt_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): # self attention tgt2 = self.norm1(tgt) q = k = self.with_pos_embed(tgt2, query_pos) tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0] tgt = tgt + self.dropout1(tgt2) # ffn tgt2 = self.norm2(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) tgt = tgt + self.dropout2(tgt2) return tgt class Fuse_sft_block(nn.Module): def __init__(self, in_ch, out_ch): super().__init__() self.encode_enc = ResBlock(2*in_ch, out_ch) self.scale = nn.Sequential( nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), nn.LeakyReLU(0.2, True), nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1)) self.shift = nn.Sequential( nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), nn.LeakyReLU(0.2, True), nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1)) def forward(self, enc_feat, dec_feat, w=1): enc_feat = self.encode_enc(torch.cat([enc_feat, dec_feat], dim=1)) scale = self.scale(enc_feat) shift = self.shift(enc_feat) residual = w * (dec_feat * scale + shift) out = dec_feat + residual return out @ARCH_REGISTRY.register() class CodeFormer(VQAutoEncoder): def __init__(self, dim_embd=512, n_head=8, n_layers=9, codebook_size=1024, latent_size=256, connect_list=['32', '64', '128', '256'], fix_modules=['quantize','generator']): super(CodeFormer, self).__init__(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',2, [16], codebook_size) if fix_modules is not None: for module in fix_modules: for param in getattr(self, module).parameters(): param.requires_grad = False self.connect_list = connect_list self.n_layers = n_layers self.dim_embd = dim_embd self.dim_mlp = dim_embd*2 self.position_emb = nn.Parameter(torch.zeros(latent_size, self.dim_embd)) self.feat_emb = nn.Linear(256, self.dim_embd) # transformer self.ft_layers = nn.Sequential(*[TransformerSALayer(embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0) for _ in range(self.n_layers)]) # logits_predict head self.idx_pred_layer = nn.Sequential( nn.LayerNorm(dim_embd), nn.Linear(dim_embd, codebook_size, bias=False)) self.channels = { '16': 512, '32': 256, '64': 256, '128': 128, '256': 128, '512': 64, } # after second residual block for > 16, before attn layer for ==16 self.fuse_encoder_block = {'512':2, '256':5, '128':8, '64':11, '32':14, '16':18} # after first residual block for > 16, before attn layer for ==16 self.fuse_generator_block = {'16':6, '32': 9, '64':12, '128':15, '256':18, '512':21} # fuse_convs_dict self.fuse_convs_dict = nn.ModuleDict() for f_size in self.connect_list: in_ch = self.channels[f_size] self.fuse_convs_dict[f_size] = Fuse_sft_block(in_ch, in_ch) def _init_weights(self, module): if isinstance(module, (nn.Linear, nn.Embedding)): module.weight.data.normal_(mean=0.0, std=0.02) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def forward(self, x, w=0, detach_16=True, code_only=False, adain=False): # ################### Encoder ##################### enc_feat_dict = {} out_list = [self.fuse_encoder_block[f_size] for f_size in self.connect_list] for i, block in enumerate(self.encoder.blocks): x = block(x) if i in out_list: enc_feat_dict[str(x.shape[-1])] = x.clone() lq_feat = x # ################# Transformer ################### # quant_feat, codebook_loss, quant_stats = self.quantize(lq_feat) pos_emb = self.position_emb.unsqueeze(1).repeat(1,x.shape[0],1) # BCHW -> BC(HW) -> (HW)BC feat_emb = self.feat_emb(lq_feat.flatten(2).permute(2,0,1)) query_emb = feat_emb # Transformer encoder for layer in self.ft_layers: query_emb = layer(query_emb, query_pos=pos_emb) # output logits logits = self.idx_pred_layer(query_emb) # (hw)bn logits = logits.permute(1,0,2) # (hw)bn -> b(hw)n if code_only: # for training stage II # logits doesn't need softmax before cross_entropy loss return logits, lq_feat # ################# Quantization ################### # if self.training: # quant_feat = torch.einsum('btn,nc->btc', [soft_one_hot, self.quantize.embedding.weight]) # # b(hw)c -> bc(hw) -> bchw # quant_feat = quant_feat.permute(0,2,1).view(lq_feat.shape) # ------------ soft_one_hot = F.softmax(logits, dim=2) _, top_idx = torch.topk(soft_one_hot, 1, dim=2) quant_feat = self.quantize.get_codebook_feat(top_idx, shape=[x.shape[0],16,16,256]) # preserve gradients # quant_feat = lq_feat + (quant_feat - lq_feat).detach() if detach_16: quant_feat = quant_feat.detach() # for training stage III if adain: quant_feat = adaptive_instance_normalization(quant_feat, lq_feat) # ################## Generator #################### x = quant_feat fuse_list = [self.fuse_generator_block[f_size] for f_size in self.connect_list] for i, block in enumerate(self.generator.blocks): x = block(x) if i in fuse_list: # fuse after i-th block f_size = str(x.shape[-1]) if w>0: x = self.fuse_convs_dict[f_size](enc_feat_dict[f_size].detach(), x, w) out = x # logits doesn't need softmax before cross_entropy loss return out, logits, lq_feat