import numpy as np import torch from PIL import Image from tqdm import tqdm from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation from invokeai.app.invocations.fields import ( FieldDescriptions, ImageField, InputField, UIType, WithBoard, WithMetadata, ) from invokeai.app.invocations.model import ModelIdentifierField from invokeai.app.invocations.primitives import ImageOutput from invokeai.app.services.shared.invocation_context import InvocationContext from invokeai.backend.spandrel_image_to_image_model import SpandrelImageToImageModel from invokeai.backend.tiles.tiles import calc_tiles_min_overlap from invokeai.backend.tiles.utils import TBLR, Tile @invocation("spandrel_image_to_image", title="Image-to-Image", tags=["upscale"], category="upscale", version="1.1.0") class SpandrelImageToImageInvocation(BaseInvocation, WithMetadata, WithBoard): """Run any spandrel image-to-image model (https://github.com/chaiNNer-org/spandrel).""" image: ImageField = InputField(description="The input image") image_to_image_model: ModelIdentifierField = InputField( title="Image-to-Image Model", description=FieldDescriptions.spandrel_image_to_image_model, ui_type=UIType.SpandrelImageToImageModel, ) tile_size: int = InputField( default=512, description="The tile size for tiled image-to-image. Set to 0 to disable tiling." ) def _scale_tile(self, tile: Tile, scale: int) -> Tile: return Tile( coords=TBLR( top=tile.coords.top * scale, bottom=tile.coords.bottom * scale, left=tile.coords.left * scale, right=tile.coords.right * scale, ), overlap=TBLR( top=tile.overlap.top * scale, bottom=tile.overlap.bottom * scale, left=tile.overlap.left * scale, right=tile.overlap.right * scale, ), ) @torch.inference_mode() def invoke(self, context: InvocationContext) -> ImageOutput: # Images are converted to RGB, because most models don't support an alpha channel. In the future, we may want to # revisit this. image = context.images.get_pil(self.image.image_name, mode="RGB") # Compute the image tiles. if self.tile_size > 0: min_overlap = 20 tiles = calc_tiles_min_overlap( image_height=image.height, image_width=image.width, tile_height=self.tile_size, tile_width=self.tile_size, min_overlap=min_overlap, ) else: # No tiling. Generate a single tile that covers the entire image. min_overlap = 0 tiles = [ Tile( coords=TBLR(top=0, bottom=image.height, left=0, right=image.width), overlap=TBLR(top=0, bottom=0, left=0, right=0), ) ] # Sort tiles first by left x coordinate, then by top y coordinate. During tile processing, we want to iterate # over tiles left-to-right, top-to-bottom. tiles = sorted(tiles, key=lambda x: x.coords.left) tiles = sorted(tiles, key=lambda x: x.coords.top) # Prepare input image for inference. image_tensor = SpandrelImageToImageModel.pil_to_tensor(image) # Load the model. spandrel_model_info = context.models.load(self.image_to_image_model) # Run the model on each tile. with spandrel_model_info as spandrel_model: assert isinstance(spandrel_model, SpandrelImageToImageModel) # Scale the tiles for re-assembling the final image. scale = spandrel_model.scale scaled_tiles = [self._scale_tile(tile, scale=scale) for tile in tiles] # Prepare the output tensor. _, channels, height, width = image_tensor.shape output_tensor = torch.zeros( (height * scale, width * scale, channels), dtype=torch.uint8, device=torch.device("cpu") ) image_tensor = image_tensor.to(device=spandrel_model.device, dtype=spandrel_model.dtype) for tile, scaled_tile in tqdm(list(zip(tiles, scaled_tiles, strict=True)), desc="Upscaling Tiles"): # Extract the current tile from the input tensor. input_tile = image_tensor[ :, :, tile.coords.top : tile.coords.bottom, tile.coords.left : tile.coords.right ].to(device=spandrel_model.device, dtype=spandrel_model.dtype) # Run the model on the tile. output_tile = spandrel_model.run(input_tile) # Convert the output tile into the output tensor's format. # (N, C, H, W) -> (C, H, W) output_tile = output_tile.squeeze(0) # (C, H, W) -> (H, W, C) output_tile = output_tile.permute(1, 2, 0) output_tile = output_tile.clamp(0, 1) output_tile = (output_tile * 255).to(dtype=torch.uint8, device=torch.device("cpu")) # Merge the output tile into the output tensor. # We only keep half of the overlap on the top and left side of the tile. We do this in case there are # edge artifacts. We don't bother with any 'blending' in the current implementation - for most upscalers # it seems unnecessary, but we may find a need in the future. top_overlap = scaled_tile.overlap.top // 2 left_overlap = scaled_tile.overlap.left // 2 output_tensor[ scaled_tile.coords.top + top_overlap : scaled_tile.coords.bottom, scaled_tile.coords.left + left_overlap : scaled_tile.coords.right, :, ] = output_tile[top_overlap:, left_overlap:, :] # Convert the output tensor to a PIL image. np_image = output_tensor.detach().numpy().astype(np.uint8) pil_image = Image.fromarray(np_image) image_dto = context.images.save(image=pil_image) return ImageOutput.build(image_dto)