import json from abc import ABC, abstractmethod from typing import Any, Dict, Optional, TypedDict from PIL import Image, PngImagePlugin from pydantic import BaseModel from invokeai.app.models.image import ImageType, is_image_type class MetadataImageField(TypedDict): """Pydantic-less ImageField, used for metadata parsing.""" image_type: ImageType image_name: str class MetadataLatentsField(TypedDict): """Pydantic-less LatentsField, used for metadata parsing.""" latents_name: str class MetadataColorField(TypedDict): """Pydantic-less ColorField, used for metadata parsing""" r: int g: int b: int a: int # TODO: This is a placeholder for `InvocationsUnion` pending resolution of circular imports NodeMetadata = Dict[ str, None | str | int | float | bool | MetadataImageField | MetadataLatentsField | MetadataColorField, ] class InvokeAIMetadata(TypedDict, total=False): """InvokeAI-specific metadata format.""" session_id: Optional[str] node: Optional[NodeMetadata] def build_invokeai_metadata_pnginfo( metadata: InvokeAIMetadata | None, ) -> PngImagePlugin.PngInfo: """Builds a PngInfo object with key `"invokeai"` and value `metadata`""" pnginfo = PngImagePlugin.PngInfo() if metadata is not None: pnginfo.add_text("invokeai", json.dumps(metadata)) return pnginfo class MetadataServiceBase(ABC): @abstractmethod def get_metadata(self, image: Image.Image) -> InvokeAIMetadata | None: """Gets the InvokeAI metadata from a PIL Image, skipping invalid values""" pass @abstractmethod def build_metadata( self, session_id: str, node: BaseModel ) -> InvokeAIMetadata | None: """Builds an InvokeAIMetadata object""" pass # @abstractmethod # def create_metadata(self, session_id: str, node_id: str) -> dict: # """Creates metadata for a result""" # pass class PngMetadataService(MetadataServiceBase): """Handles loading and building metadata for images.""" # TODO: Use `InvocationsUnion` to **validate** metadata as representing a fully-functioning node def _load_metadata(self, image: Image.Image) -> dict | None: """Loads a specific info entry from a PIL Image.""" try: info = image.info.get("invokeai") if type(info) is not str: return None loaded_metadata = json.loads(info) if type(loaded_metadata) is not dict: return None if len(loaded_metadata.items()) == 0: return None return loaded_metadata except: return None def get_metadata(self, image: Image.Image) -> dict | None: """Retrieves an image's metadata as a dict""" loaded_metadata = self._load_metadata(image) return loaded_metadata def build_metadata(self, session_id: str, node: BaseModel) -> InvokeAIMetadata: metadata = InvokeAIMetadata(session_id=session_id, node=node.dict()) return metadata