# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) from typing import Literal import cv2 as cv import numpy from PIL import Image, ImageOps from pydantic import BaseModel, Field from invokeai.app.models.image import ImageCategory, ImageField, ImageType from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig from .image import ImageOutput class CvInvocationConfig(BaseModel): """Helper class to provide all OpenCV invocations with additional config""" # Schema customisation class Config(InvocationConfig): schema_extra = { "ui": { "tags": ["cv", "image"], }, } class CvInpaintInvocation(BaseInvocation, CvInvocationConfig): """Simple inpaint using opencv.""" # fmt: off type: Literal["cv_inpaint"] = "cv_inpaint" # Inputs image: ImageField = Field(default=None, description="The image to inpaint") mask: ImageField = Field(default=None, description="The mask to use when inpainting") # fmt: on def invoke(self, context: InvocationContext) -> ImageOutput: image = context.services.images.get_pil_image( self.image.image_type, self.image.image_name ) mask = context.services.images.get_pil_image( self.mask.image_type, self.mask.image_name ) # Convert to cv image/mask # TODO: consider making these utility functions cv_image = cv.cvtColor(numpy.array(image.convert("RGB")), cv.COLOR_RGB2BGR) cv_mask = numpy.array(ImageOps.invert(mask.convert("L"))) # Inpaint cv_inpainted = cv.inpaint(cv_image, cv_mask, 3, cv.INPAINT_TELEA) # Convert back to Pillow # TODO: consider making a utility function image_inpainted = Image.fromarray(cv.cvtColor(cv_inpainted, cv.COLOR_BGR2RGB)) image_dto = context.services.images.create( image=image_inpainted, image_type=ImageType.RESULT, image_category=ImageCategory.GENERAL, node_id=self.id, session_id=context.graph_execution_state_id, ) return ImageOutput( image=ImageField( image_name=image_dto.image_name, image_type=image_dto.image_type, ), width=image_dto.width, height=image_dto.height, )