''' ldm.invoke.generator.inpaint descends from ldm.invoke.generator ''' import torch import numpy as np from einops import rearrange, repeat from ldm.invoke.devices import choose_autocast from ldm.invoke.generator.img2img import Img2Img from ldm.models.diffusion.ddim import DDIMSampler from ldm.models.diffusion.ksampler import KSampler class Inpaint(Img2Img): def __init__(self, model, precision): self.init_latent = None super().__init__(model, precision) @torch.no_grad() def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta, conditioning,init_image,mask_image,strength, step_callback=None,**kwargs): """ Returns a function returning an image derived from the prompt and the initial image + mask. Return value depends on the seed at the time you call it. kwargs are 'init_latent' and 'strength' """ # klms samplers not supported yet, so ignore previous sampler if isinstance(sampler,KSampler): print( f">> Using recommended DDIM sampler for inpainting." ) sampler = DDIMSampler(self.model, device=self.model.device) sampler.make_schedule( ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False ) mask_image = mask_image[0][0].unsqueeze(0).repeat(4,1,1).unsqueeze(0) mask_image = repeat(mask_image, '1 ... -> b ...', b=1) scope = choose_autocast(self.precision) with scope(self.model.device.type): self.init_latent = self.model.get_first_stage_encoding( self.model.encode_first_stage(init_image) ) # move to latent space t_enc = int(strength * steps) uc, c = conditioning print(f">> target t_enc is {t_enc} steps") @torch.no_grad() def make_image(x_T): # encode (scaled latent) z_enc = sampler.stochastic_encode( self.init_latent, torch.tensor([t_enc]).to(self.model.device), noise=x_T ) # decode it samples = sampler.decode( z_enc, c, t_enc, img_callback = step_callback, unconditional_guidance_scale = cfg_scale, unconditional_conditioning = uc, mask = mask_image, init_latent = self.init_latent ) return self.sample_to_image(samples) return make_image