# InvokeAI nodes for ControlNet image preprocessors # initial implementation by Gregg Helt, 2023 # heavily leverages controlnet_aux package: https://github.com/patrickvonplaten/controlnet_aux import numpy as np from typing import Literal, Optional, Union, List from pydantic import BaseModel, Field from ..models.image import ImageField, ImageType from .baseinvocation import ( BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig, ) from controlnet_aux import ( CannyDetector, HEDdetector, LineartDetector, LineartAnimeDetector, MidasDetector, MLSDdetector, NormalBaeDetector, OpenposeDetector, PidiNetDetector, ContentShuffleDetector, ZoeDetector) from .image import ImageOutput, build_image_output, PILInvocationConfig class ControlField(BaseModel): image: ImageField = Field(default=None, description="processed image") # width: Optional[int] = Field(default=None, description="The width of the image in pixels") # height: Optional[int] = Field(default=None, description="The height of the image in pixels") # mode: Optional[str] = Field(default=None, description="The mode of the image") control_model: Optional[str] = Field(default=None, description="The control model used") control_weight: Optional[float] = Field(default=None, description="The control weight used") class Config: schema_extra = { "required": ["image", "control_model", "control_weight"] # "required": ["type", "image", "width", "height", "mode"] } class ControlOutput(BaseInvocationOutput): """node output for ControlNet info""" # fmt: off type: Literal["control_output"] = "control_output" control: Optional[ControlField] = Field(default=None, description="The control info dict") raw_processed_image: ImageField = Field(default=None, description="outputs just the image info (also included in control output)") # fmt: on # This super class handles invoke() call, which in turn calls run_processor(image) # subclasses override run_processor() instead of implementing their own invoke() class PreprocessedControlNetInvocation(BaseInvocation, PILInvocationConfig): """Base class for invocations that preprocess images for ControlNet""" # fmt: off type: Literal["preprocessed_control"] = "preprocessed_control" # Inputs image: ImageField = Field(default=None, description="image to process") control_model: str = Field(default=None, description="control model to use") control_weight: float = Field(default=0.5, ge=0, le=1, description="control weight") # TODO: support additional ControlNet parameters (mostly just passthroughs to other nodes with ControlField inputs) # begin_step_percent: float = Field(default=0, ge=0, le=1, # description="% of total steps at which controlnet is first applied") # end_step_percent: float = Field(default=1, ge=0, le=1, # description="% of total steps at which controlnet is last applied") # guess_mode: bool = Field(default=False, description="use guess mode (controlnet ignores prompt)") # fmt: on def run_processor(self, image): # superclass just passes through image without processing return image def invoke(self, context: InvocationContext) -> ControlOutput: raw_image = context.services.images.get( self.image.image_type, self.image.image_name ) # image type should be PIL.PngImagePlugin.PngImageFile ? processed_image = self.run_processor(raw_image) # currently can't see processed image in node UI without a showImage node, # so for now setting image_type to RESULT instead of INTERMEDIATE so will get saved in gallery # image_type = ImageType.INTERMEDIATE image_type = ImageType.RESULT image_name = context.services.images.create_name( context.graph_execution_state_id, self.id ) metadata = context.services.metadata.build_metadata( session_id=context.graph_execution_state_id, node=self ) context.services.images.save(image_type, image_name, processed_image, metadata) """Builds an ImageOutput and its ImageField""" image_field = ImageField( image_name=image_name, image_type=image_type, ) return ControlOutput( control=ControlField( image=image_field, control_model=self.control_model, control_weight=self.control_weight, ), raw_processed_image=image_field, ) class CannyControlInvocation(PreprocessedControlNetInvocation, PILInvocationConfig): """Canny edge detection for ControlNet""" # fmt: off type: Literal["cannycontrol"] = "cannycontrol" # Input low_threshold: float = Field(default=100, ge=0, description="low threshold of Canny pixel gradient") high_threshold: float = Field(default=200, ge=0, description="high threshold of Canny pixel gradient") # fmt: on def run_processor(self, image): canny_processor = CannyDetector() processed_image = canny_processor(image, self.low_threshold, self.high_threshold) return processed_image class HedControlNetInvocation(PreprocessedControlNetInvocation, PILInvocationConfig): """Applies HED edge detection to image""" # fmt: off type: Literal["hed_control"] = "hed_control" # Inputs detect_resolution: int = Field(default=512, ge=0, description="pixel resolution for edge detection") image_resolution: int = Field(default=512, ge=0, description="pixel resolution for output image") safe: bool = Field(default=False, description="whether to use safe mode") scribble: bool = Field(default=False, description="whether to use scribble mode") # fmt: on def run_processor(self, image): hed_processor = HEDdetector.from_pretrained("lllyasviel/Annotators") processed_image = hed_processor(image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution, safe=self.safe, scribble=self.scribble, ) return processed_image class LineartControlInvocation(PreprocessedControlNetInvocation, PILInvocationConfig): """Applies line art processing to image""" # fmt: off type: Literal["lineart_control"] = "lineart_control" # Inputs detect_resolution: int = Field(default=512, ge=0, description="pixel resolution for edge detection") image_resolution: int = Field(default=512, ge=0, description="pixel resolution for output image") coarse: bool = Field(default=False, description="whether to use coarse mode") # fmt: on def run_processor(self, image): lineart_processor = LineartDetector.from_pretrained("lllyasviel/Annotators") processed_image = lineart_processor(image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution, coarse=self.coarse) return processed_image class LineartAnimeControlInvocation(PreprocessedControlNetInvocation, PILInvocationConfig): """Applies line art anime processing to image""" # fmt: off type: Literal["lineart_anime_control"] = "lineart_anime_control" # Inputs detect_resolution: int = Field(default=512, ge=0, description="pixel resolution for edge detection") image_resolution: int = Field(default=512, ge=0, description="pixel resolution for output image") # fmt: on def run_processor(self, image): processor = LineartAnimeDetector.from_pretrained("lllyasviel/Annotators") processed_image = processor(image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution, ) return processed_image class OpenposeControlInvocation(PreprocessedControlNetInvocation, PILInvocationConfig): """Applies Openpose processing to image""" # fmt: off type: Literal["openpose_control"] = "openpose_control" # Inputs hand_and_face: bool = Field(default=False, description="whether to use hands and face mode") detect_resolution: int = Field(default=512, ge=0, description="pixel resolution for edge detection") image_resolution: int = Field(default=512, ge=0, description="pixel resolution for output image") # fmt: on def run_processor(self, image): openpose_processor = OpenposeDetector.from_pretrained("lllyasviel/Annotators") processed_image = openpose_processor(image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution, hand_and_face=self.hand_and_face, ) return processed_image class MidasDepthControlInvocation(PreprocessedControlNetInvocation, PILInvocationConfig): """Applies Midas depth processing to image""" # fmt: off type: Literal["midas_control"] = "midas_control" # Inputs a_mult: float = Field(default=2.0, ge=0, description="Midas parameter a = amult * PI") bg_th: float = Field(default=0.1, ge=0, description="Midas parameter bg_th") depth_and_normal: bool = Field(default=False, description="whether to use depth and normal mode") # fmt: on def run_processor(self, image): midas_processor = MidasDetector.from_pretrained("lllyasviel/Annotators") processed_image = midas_processor(image, a=np.pi * self.a_mult, bg_th=self.bg_th, depth_and_normal=self.depth_and_normal) return processed_image class NormalbaeControlNetInvocation(PreprocessedControlNetInvocation, PILInvocationConfig): """Applies NormalBae processing to image""" # fmt: off type: Literal["normalbae_control"] = "normalbae_control" # Inputs detect_resolution: int = Field(default=512, ge=0, description="pixel resolution for edge detection") image_resolution: int = Field(default=512, ge=0, description="pixel resolution for output image") # fmt: on def run_processor(self, image): normalbae_processor = NormalBaeDetector.from_pretrained("lllyasviel/Annotators") processed_image = normalbae_processor(image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution) return processed_image class MLSDControlNetInvocation(PreprocessedControlNetInvocation, PILInvocationConfig): """Applies MLSD processing to image""" # fmt: off type: Literal["mlsd_control"] = "mlsd_control" # Inputs detect_resolution: int = Field(default=512, ge=0, description="pixel resolution for edge detection") image_resolution: int = Field(default=512, ge=0, description="pixel resolution for output image") thr_v: float = Field(default=0.1, ge=0, description="MLSD parameter thr_v") thr_d: float = Field(default=0.1, ge=0, description="MLSD parameter thr_d") # fmt: on def run_processor(self, image): mlsd_processor = MLSDdetector.from_pretrained("lllyasviel/Annotators") processed_image = mlsd_processor(image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution, thr_v=self.thr_v, thr_d=self.thr_d) return processed_image class PidiControlNetInvocation(PreprocessedControlNetInvocation, PILInvocationConfig): """Applies PIDI processing to image""" # fmt: off type: Literal["pidi_control"] = "pidi_control" # Inputs detect_resolution: int = Field(default=512, ge=0, description="pixel resolution for edge detection") image_resolution: int = Field(default=512, ge=0, description="pixel resolution for output image") safe: bool = Field(default=False, description="whether to use safe mode") scribble: bool = Field(default=False, description="whether to use scribble mode") # fmt: on def run_processor(self, image): pidi_processor = PidiNetDetector.from_pretrained("lllyasviel/Annotators") processed_image = pidi_processor(image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution, safe=self.safe, scribble=self.scribble) return processed_image class ContentShuffleControlInvocation(PreprocessedControlNetInvocation, PILInvocationConfig): """Applies content shuffle processing to image""" # fmt: off type: Literal["content_shuffle_control"] = "content_shuffle_control" # Inputs detect_resolution: int = Field(default=512, ge=0, description="pixel resolution for edge detection") image_resolution: int = Field(default=512, ge=0, description="pixel resolution for output image") h: Union[int | None] = Field(default=None, ge=0, description="content shuffle h parameter") w: Union[int | None] = Field(default=None, ge=0, description="content shuffle w parameter") f: Union[int | None] = Field(default=None, ge=0, description="cont") # fmt: on def run_processor(self, image): content_shuffle_processor = ContentShuffleDetector() processed_image = content_shuffle_processor(image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution, h=self.h, w=self.w, f=self.f ) return processed_image class ZoeDepthControlInvocation(PreprocessedControlNetInvocation, PILInvocationConfig): """Applies Zoe depth processing to image""" # fmt: off type: Literal["zoe_depth_control"] = "zoe_depth_control" # fmt: on def run_processor(self, image): zoe_depth_processor = ZoeDetector.from_pretrained("lllyasviel/Annotators") processed_image = zoe_depth_processor(image) return processed_image