import logging import pytest # This import must happen before other invoke imports or test in other files(!!) break from .test_nodes import ( # isort: split PromptCollectionTestInvocation, PromptTestInvocation, TestEventService, TextToImageTestInvocation, ) from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext from invokeai.app.invocations.collections import RangeInvocation from invokeai.app.invocations.math import AddInvocation, MultiplyInvocation from invokeai.app.services.config.config_default import InvokeAIAppConfig from invokeai.app.services.invocation_cache.invocation_cache_memory import MemoryInvocationCache from invokeai.app.services.invocation_processor.invocation_processor_default import DefaultInvocationProcessor from invokeai.app.services.invocation_queue.invocation_queue_memory import MemoryInvocationQueue from invokeai.app.services.invocation_services import InvocationServices from invokeai.app.services.invocation_stats.invocation_stats_default import InvocationStatsService from invokeai.app.services.item_storage.item_storage_sqlite import SqliteItemStorage from invokeai.app.services.session_queue.session_queue_common import DEFAULT_QUEUE_ID from invokeai.app.services.shared.graph import ( CollectInvocation, Graph, GraphExecutionState, IterateInvocation, ) from invokeai.backend.util.logging import InvokeAILogger from tests.fixtures.sqlite_database import create_mock_sqlite_database from .test_invoker import create_edge @pytest.fixture def simple_graph(): g = Graph() g.add_node(PromptTestInvocation(id="1", prompt="Banana sushi")) g.add_node(TextToImageTestInvocation(id="2")) g.add_edge(create_edge("1", "prompt", "2", "prompt")) return g # This must be defined here to avoid issues with the dynamic creation of the union of all invocation types # Defining it in a separate module will cause the union to be incomplete, and pydantic will not validate # the test invocations. @pytest.fixture def mock_services() -> InvocationServices: configuration = InvokeAIAppConfig(use_memory_db=True, node_cache_size=0) logger = InvokeAILogger.get_logger() db = create_mock_sqlite_database(configuration, logger) # NOTE: none of these are actually called by the test invocations graph_execution_manager = SqliteItemStorage[GraphExecutionState](db=db, table_name="graph_executions") return InvocationServices( board_image_records=None, # type: ignore board_images=None, # type: ignore board_records=None, # type: ignore boards=None, # type: ignore configuration=configuration, events=TestEventService(), graph_execution_manager=graph_execution_manager, image_files=None, # type: ignore image_records=None, # type: ignore images=None, # type: ignore invocation_cache=MemoryInvocationCache(max_cache_size=0), latents=None, # type: ignore logger=logging, # type: ignore model_manager=None, # type: ignore model_records=None, # type: ignore download_queue=None, # type: ignore model_install=None, # type: ignore names=None, # type: ignore performance_statistics=InvocationStatsService(), processor=DefaultInvocationProcessor(), queue=MemoryInvocationQueue(), session_processor=None, # type: ignore session_queue=None, # type: ignore urls=None, # type: ignore workflow_records=None, # type: ignore ) def invoke_next(g: GraphExecutionState, services: InvocationServices) -> tuple[BaseInvocation, BaseInvocationOutput]: n = g.next() if n is None: return (None, None) print(f"invoking {n.id}: {type(n)}") o = n.invoke( InvocationContext( queue_batch_id="1", queue_item_id=1, queue_id=DEFAULT_QUEUE_ID, services=services, graph_execution_state_id="1", workflow=None, ) ) g.complete(n.id, o) return (n, o) def test_graph_state_executes_in_order(simple_graph, mock_services): g = GraphExecutionState(graph=simple_graph) n1 = invoke_next(g, mock_services) n2 = invoke_next(g, mock_services) n3 = g.next() assert g.prepared_source_mapping[n1[0].id] == "1" assert g.prepared_source_mapping[n2[0].id] == "2" assert n3 is None assert g.results[n1[0].id].prompt == n1[0].prompt assert n2[0].prompt == n1[0].prompt def test_graph_is_complete(simple_graph, mock_services): g = GraphExecutionState(graph=simple_graph) _ = invoke_next(g, mock_services) _ = invoke_next(g, mock_services) _ = g.next() assert g.is_complete() def test_graph_is_not_complete(simple_graph, mock_services): g = GraphExecutionState(graph=simple_graph) _ = invoke_next(g, mock_services) _ = g.next() assert not g.is_complete() # TODO: test completion with iterators/subgraphs def test_graph_state_expands_iterator(mock_services): graph = Graph() graph.add_node(RangeInvocation(id="0", start=0, stop=3, step=1)) graph.add_node(IterateInvocation(id="1")) graph.add_node(MultiplyInvocation(id="2", b=10)) graph.add_node(AddInvocation(id="3", b=1)) graph.add_edge(create_edge("0", "collection", "1", "collection")) graph.add_edge(create_edge("1", "item", "2", "a")) graph.add_edge(create_edge("2", "value", "3", "a")) g = GraphExecutionState(graph=graph) while not g.is_complete(): invoke_next(g, mock_services) prepared_add_nodes = g.source_prepared_mapping["3"] results = {g.results[n].value for n in prepared_add_nodes} expected = {1, 11, 21} assert results == expected def test_graph_state_collects(mock_services): graph = Graph() test_prompts = ["Banana sushi", "Cat sushi"] graph.add_node(PromptCollectionTestInvocation(id="1", collection=list(test_prompts))) graph.add_node(IterateInvocation(id="2")) graph.add_node(PromptTestInvocation(id="3")) graph.add_node(CollectInvocation(id="4")) graph.add_edge(create_edge("1", "collection", "2", "collection")) graph.add_edge(create_edge("2", "item", "3", "prompt")) graph.add_edge(create_edge("3", "prompt", "4", "item")) g = GraphExecutionState(graph=graph) _ = invoke_next(g, mock_services) _ = invoke_next(g, mock_services) _ = invoke_next(g, mock_services) _ = invoke_next(g, mock_services) _ = invoke_next(g, mock_services) n6 = invoke_next(g, mock_services) assert isinstance(n6[0], CollectInvocation) assert sorted(g.results[n6[0].id].collection) == sorted(test_prompts) def test_graph_state_prepares_eagerly(mock_services): """Tests that all prepareable nodes are prepared""" graph = Graph() test_prompts = ["Banana sushi", "Cat sushi"] graph.add_node(PromptCollectionTestInvocation(id="prompt_collection", collection=list(test_prompts))) graph.add_node(IterateInvocation(id="iterate")) graph.add_node(PromptTestInvocation(id="prompt_iterated")) graph.add_edge(create_edge("prompt_collection", "collection", "iterate", "collection")) graph.add_edge(create_edge("iterate", "item", "prompt_iterated", "prompt")) # separated, fully-preparable chain of nodes graph.add_node(PromptTestInvocation(id="prompt_chain_1", prompt="Dinosaur sushi")) graph.add_node(PromptTestInvocation(id="prompt_chain_2")) graph.add_node(PromptTestInvocation(id="prompt_chain_3")) graph.add_edge(create_edge("prompt_chain_1", "prompt", "prompt_chain_2", "prompt")) graph.add_edge(create_edge("prompt_chain_2", "prompt", "prompt_chain_3", "prompt")) g = GraphExecutionState(graph=graph) g.next() assert "prompt_collection" in g.source_prepared_mapping assert "prompt_chain_1" in g.source_prepared_mapping assert "prompt_chain_2" in g.source_prepared_mapping assert "prompt_chain_3" in g.source_prepared_mapping assert "iterate" not in g.source_prepared_mapping assert "prompt_iterated" not in g.source_prepared_mapping def test_graph_executes_depth_first(mock_services): """Tests that the graph executes depth-first, executing a branch as far as possible before moving to the next branch""" graph = Graph() test_prompts = ["Banana sushi", "Cat sushi"] graph.add_node(PromptCollectionTestInvocation(id="prompt_collection", collection=list(test_prompts))) graph.add_node(IterateInvocation(id="iterate")) graph.add_node(PromptTestInvocation(id="prompt_iterated")) graph.add_node(PromptTestInvocation(id="prompt_successor")) graph.add_edge(create_edge("prompt_collection", "collection", "iterate", "collection")) graph.add_edge(create_edge("iterate", "item", "prompt_iterated", "prompt")) graph.add_edge(create_edge("prompt_iterated", "prompt", "prompt_successor", "prompt")) g = GraphExecutionState(graph=graph) _ = invoke_next(g, mock_services) _ = invoke_next(g, mock_services) _ = invoke_next(g, mock_services) _ = invoke_next(g, mock_services) # Because ordering is not guaranteed, we cannot compare results directly. # Instead, we must count the number of results. def get_completed_count(g, id): ids = list(g.source_prepared_mapping[id]) completed_ids = [i for i in g.executed if i in ids] return len(completed_ids) # Check at each step that the number of executed nodes matches the expectation for depth-first execution assert get_completed_count(g, "prompt_iterated") == 1 assert get_completed_count(g, "prompt_successor") == 0 _ = invoke_next(g, mock_services) assert get_completed_count(g, "prompt_iterated") == 1 assert get_completed_count(g, "prompt_successor") == 1 _ = invoke_next(g, mock_services) assert get_completed_count(g, "prompt_iterated") == 2 assert get_completed_count(g, "prompt_successor") == 1 _ = invoke_next(g, mock_services) assert get_completed_count(g, "prompt_iterated") == 2 assert get_completed_count(g, "prompt_successor") == 2