# Copyright (c) 2023 Borisov Sergey (https://github.com/StAlKeR7779) import inspect import re # from contextlib import ExitStack from typing import List, Literal, Union import numpy as np import torch from diffusers.image_processor import VaeImageProcessor from pydantic import BaseModel, ConfigDict, Field, field_validator from tqdm import tqdm from invokeai.app.invocations.primitives import ConditioningField, ConditioningOutput, ImageField, ImageOutput from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin from invokeai.app.shared.fields import FieldDescriptions from invokeai.app.util.step_callback import stable_diffusion_step_callback from invokeai.backend import BaseModelType, ModelType, SubModelType from ...backend.model_management import ONNXModelPatcher from ...backend.stable_diffusion import PipelineIntermediateState from ...backend.util import choose_torch_device from .baseinvocation import ( BaseInvocation, BaseInvocationOutput, Input, InputField, InvocationContext, OutputField, UIComponent, UIType, WithMetadata, WithWorkflow, invocation, invocation_output, ) from .controlnet_image_processors import ControlField from .latent import SAMPLER_NAME_VALUES, LatentsField, LatentsOutput, build_latents_output, get_scheduler from .model import ClipField, ModelInfo, UNetField, VaeField ORT_TO_NP_TYPE = { "tensor(bool)": np.bool_, "tensor(int8)": np.int8, "tensor(uint8)": np.uint8, "tensor(int16)": np.int16, "tensor(uint16)": np.uint16, "tensor(int32)": np.int32, "tensor(uint32)": np.uint32, "tensor(int64)": np.int64, "tensor(uint64)": np.uint64, "tensor(float16)": np.float16, "tensor(float)": np.float32, "tensor(double)": np.float64, } PRECISION_VALUES = Literal[tuple(ORT_TO_NP_TYPE.keys())] @invocation("prompt_onnx", title="ONNX Prompt (Raw)", tags=["prompt", "onnx"], category="conditioning", version="1.0.0") class ONNXPromptInvocation(BaseInvocation): prompt: str = InputField(default="", description=FieldDescriptions.raw_prompt, ui_component=UIComponent.Textarea) clip: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection) def invoke(self, context: InvocationContext) -> ConditioningOutput: tokenizer_info = context.services.model_manager.get_model( **self.clip.tokenizer.model_dump(), ) text_encoder_info = context.services.model_manager.get_model( **self.clip.text_encoder.model_dump(), ) with tokenizer_info as orig_tokenizer, text_encoder_info as text_encoder: # , ExitStack() as stack: loras = [ ( context.services.model_manager.get_model(**lora.model_dump(exclude={"weight"})).context.model, lora.weight, ) for lora in self.clip.loras ] ti_list = [] for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", self.prompt): name = trigger[1:-1] try: ti_list.append( ( name, context.services.model_manager.get_model( model_name=name, base_model=self.clip.text_encoder.base_model, model_type=ModelType.TextualInversion, ).context.model, ) ) except Exception: # print(e) # import traceback # print(traceback.format_exc()) print(f'Warn: trigger: "{trigger}" not found') if loras or ti_list: text_encoder.release_session() with ( ONNXModelPatcher.apply_lora_text_encoder(text_encoder, loras), ONNXModelPatcher.apply_ti(orig_tokenizer, text_encoder, ti_list) as (tokenizer, ti_manager), ): text_encoder.create_session() # copy from # https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L153 text_inputs = tokenizer( self.prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="np", ) text_input_ids = text_inputs.input_ids """ untruncated_ids = tokenizer(prompt, padding="max_length", return_tensors="np").input_ids if not np.array_equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) """ prompt_embeds = text_encoder(input_ids=text_input_ids.astype(np.int32))[0] conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning" # TODO: hacky but works ;D maybe rename latents somehow? context.services.latents.save(conditioning_name, (prompt_embeds, None)) return ConditioningOutput( conditioning=ConditioningField( conditioning_name=conditioning_name, ), ) # Text to image @invocation( "t2l_onnx", title="ONNX Text to Latents", tags=["latents", "inference", "txt2img", "onnx"], category="latents", version="1.0.0", ) class ONNXTextToLatentsInvocation(BaseInvocation): """Generates latents from conditionings.""" positive_conditioning: ConditioningField = InputField( description=FieldDescriptions.positive_cond, input=Input.Connection, ) negative_conditioning: ConditioningField = InputField( description=FieldDescriptions.negative_cond, input=Input.Connection, ) noise: LatentsField = InputField( description=FieldDescriptions.noise, input=Input.Connection, ) steps: int = InputField(default=10, gt=0, description=FieldDescriptions.steps) cfg_scale: Union[float, List[float]] = InputField( default=7.5, ge=1, description=FieldDescriptions.cfg_scale, ) scheduler: SAMPLER_NAME_VALUES = InputField( default="euler", description=FieldDescriptions.scheduler, input=Input.Direct, ui_type=UIType.Scheduler ) precision: PRECISION_VALUES = InputField(default="tensor(float16)", description=FieldDescriptions.precision) unet: UNetField = InputField( description=FieldDescriptions.unet, input=Input.Connection, ) control: Union[ControlField, list[ControlField]] = InputField( default=None, description=FieldDescriptions.control, ) # seamless: bool = InputField(default=False, description="Whether or not to generate an image that can tile without seams", ) # seamless_axes: str = InputField(default="", description="The axes to tile the image on, 'x' and/or 'y'") @field_validator("cfg_scale") def ge_one(cls, v): """validate that all cfg_scale values are >= 1""" if isinstance(v, list): for i in v: if i < 1: raise ValueError("cfg_scale must be greater than 1") else: if v < 1: raise ValueError("cfg_scale must be greater than 1") return v # based on # https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L375 def invoke(self, context: InvocationContext) -> LatentsOutput: c, _ = context.services.latents.get(self.positive_conditioning.conditioning_name) uc, _ = context.services.latents.get(self.negative_conditioning.conditioning_name) graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id) source_node_id = graph_execution_state.prepared_source_mapping[self.id] if isinstance(c, torch.Tensor): c = c.cpu().numpy() if isinstance(uc, torch.Tensor): uc = uc.cpu().numpy() device = torch.device(choose_torch_device()) prompt_embeds = np.concatenate([uc, c]) latents = context.services.latents.get(self.noise.latents_name) if isinstance(latents, torch.Tensor): latents = latents.cpu().numpy() # TODO: better execution device handling latents = latents.astype(ORT_TO_NP_TYPE[self.precision]) # get the initial random noise unless the user supplied it do_classifier_free_guidance = True # latents_dtype = prompt_embeds.dtype # latents_shape = (batch_size * num_images_per_prompt, 4, height // 8, width // 8) # if latents.shape != latents_shape: # raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") scheduler = get_scheduler( context=context, scheduler_info=self.unet.scheduler, scheduler_name=self.scheduler, seed=0, # TODO: refactor this node ) def torch2numpy(latent: torch.Tensor): return latent.cpu().numpy() def numpy2torch(latent, device): return torch.from_numpy(latent).to(device) def dispatch_progress( self, context: InvocationContext, source_node_id: str, intermediate_state: PipelineIntermediateState ) -> None: stable_diffusion_step_callback( context=context, intermediate_state=intermediate_state, node=self.model_dump(), source_node_id=source_node_id, ) scheduler.set_timesteps(self.steps) latents = latents * np.float64(scheduler.init_noise_sigma) extra_step_kwargs = {} if "eta" in set(inspect.signature(scheduler.step).parameters.keys()): extra_step_kwargs.update( eta=0.0, ) unet_info = context.services.model_manager.get_model(**self.unet.unet.model_dump()) with unet_info as unet: # , ExitStack() as stack: # loras = [(stack.enter_context(context.services.model_manager.get_model(**lora.dict(exclude={"weight"}))), lora.weight) for lora in self.unet.loras] loras = [ ( context.services.model_manager.get_model(**lora.model_dump(exclude={"weight"})).context.model, lora.weight, ) for lora in self.unet.loras ] if loras: unet.release_session() with ONNXModelPatcher.apply_lora_unet(unet, loras): # TODO: _, _, h, w = latents.shape unet.create_session(h, w) timestep_dtype = next( (input.type for input in unet.session.get_inputs() if input.name == "timestep"), "tensor(float16)" ) timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype] for i in tqdm(range(len(scheduler.timesteps))): t = scheduler.timesteps[i] # expand the latents if we are doing classifier free guidance latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = scheduler.scale_model_input(numpy2torch(latent_model_input, device), t) latent_model_input = latent_model_input.cpu().numpy() # predict the noise residual timestep = np.array([t], dtype=timestep_dtype) noise_pred = unet(sample=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds) noise_pred = noise_pred[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2) noise_pred = noise_pred_uncond + self.cfg_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 scheduler_output = scheduler.step( numpy2torch(noise_pred, device), t, numpy2torch(latents, device), **extra_step_kwargs ) latents = torch2numpy(scheduler_output.prev_sample) state = PipelineIntermediateState( run_id="test", step=i, timestep=timestep, latents=scheduler_output.prev_sample ) dispatch_progress(self, context=context, source_node_id=source_node_id, intermediate_state=state) # call the callback, if provided # if callback is not None and i % callback_steps == 0: # callback(i, t, latents) torch.cuda.empty_cache() name = f"{context.graph_execution_state_id}__{self.id}" context.services.latents.save(name, latents) return build_latents_output(latents_name=name, latents=torch.from_numpy(latents)) # Latent to image @invocation( "l2i_onnx", title="ONNX Latents to Image", tags=["latents", "image", "vae", "onnx"], category="image", version="1.0.0", ) class ONNXLatentsToImageInvocation(BaseInvocation, WithMetadata, WithWorkflow): """Generates an image from latents.""" latents: LatentsField = InputField( description=FieldDescriptions.denoised_latents, input=Input.Connection, ) vae: VaeField = InputField( description=FieldDescriptions.vae, input=Input.Connection, ) # tiled: bool = InputField(default=False, description="Decode latents by overlaping tiles(less memory consumption)") def invoke(self, context: InvocationContext) -> ImageOutput: latents = context.services.latents.get(self.latents.latents_name) if self.vae.vae.submodel != SubModelType.VaeDecoder: raise Exception(f"Expected vae_decoder, found: {self.vae.vae.model_type}") vae_info = context.services.model_manager.get_model( **self.vae.vae.model_dump(), ) # clear memory as vae decode can request a lot torch.cuda.empty_cache() with vae_info as vae: vae.create_session() # copied from # https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L427 latents = 1 / 0.18215 * latents # image = self.vae_decoder(latent_sample=latents)[0] # it seems likes there is a strange result for using half-precision vae decoder if batchsize>1 image = np.concatenate([vae(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])]) image = np.clip(image / 2 + 0.5, 0, 1) image = image.transpose((0, 2, 3, 1)) image = VaeImageProcessor.numpy_to_pil(image)[0] torch.cuda.empty_cache() image_dto = context.services.images.create( image=image, image_origin=ResourceOrigin.INTERNAL, image_category=ImageCategory.GENERAL, node_id=self.id, session_id=context.graph_execution_state_id, is_intermediate=self.is_intermediate, metadata=self.metadata, workflow=self.workflow, ) return ImageOutput( image=ImageField(image_name=image_dto.image_name), width=image_dto.width, height=image_dto.height, ) @invocation_output("model_loader_output_onnx") class ONNXModelLoaderOutput(BaseInvocationOutput): """Model loader output""" unet: UNetField = OutputField(default=None, description=FieldDescriptions.unet, title="UNet") clip: ClipField = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP") vae_decoder: VaeField = OutputField(default=None, description=FieldDescriptions.vae, title="VAE Decoder") vae_encoder: VaeField = OutputField(default=None, description=FieldDescriptions.vae, title="VAE Encoder") class OnnxModelField(BaseModel): """Onnx model field""" model_name: str = Field(description="Name of the model") base_model: BaseModelType = Field(description="Base model") model_type: ModelType = Field(description="Model Type") model_config = ConfigDict(protected_namespaces=()) @invocation("onnx_model_loader", title="ONNX Main Model", tags=["onnx", "model"], category="model", version="1.0.0") class OnnxModelLoaderInvocation(BaseInvocation): """Loads a main model, outputting its submodels.""" model: OnnxModelField = InputField( description=FieldDescriptions.onnx_main_model, input=Input.Direct, ui_type=UIType.ONNXModel ) def invoke(self, context: InvocationContext) -> ONNXModelLoaderOutput: base_model = self.model.base_model model_name = self.model.model_name model_type = ModelType.ONNX # TODO: not found exceptions if not context.services.model_manager.model_exists( model_name=model_name, base_model=base_model, model_type=model_type, ): raise Exception(f"Unknown {base_model} {model_type} model: {model_name}") """ if not context.services.model_manager.model_exists( model_name=self.model_name, model_type=SDModelType.Diffusers, submodel=SDModelType.Tokenizer, ): raise Exception( f"Failed to find tokenizer submodel in {self.model_name}! Check if model corrupted" ) if not context.services.model_manager.model_exists( model_name=self.model_name, model_type=SDModelType.Diffusers, submodel=SDModelType.TextEncoder, ): raise Exception( f"Failed to find text_encoder submodel in {self.model_name}! Check if model corrupted" ) if not context.services.model_manager.model_exists( model_name=self.model_name, model_type=SDModelType.Diffusers, submodel=SDModelType.UNet, ): raise Exception( f"Failed to find unet submodel from {self.model_name}! Check if model corrupted" ) """ return ONNXModelLoaderOutput( unet=UNetField( unet=ModelInfo( model_name=model_name, base_model=base_model, model_type=model_type, submodel=SubModelType.UNet, ), scheduler=ModelInfo( model_name=model_name, base_model=base_model, model_type=model_type, submodel=SubModelType.Scheduler, ), loras=[], ), clip=ClipField( tokenizer=ModelInfo( model_name=model_name, base_model=base_model, model_type=model_type, submodel=SubModelType.Tokenizer, ), text_encoder=ModelInfo( model_name=model_name, base_model=base_model, model_type=model_type, submodel=SubModelType.TextEncoder, ), loras=[], skipped_layers=0, ), vae_decoder=VaeField( vae=ModelInfo( model_name=model_name, base_model=base_model, model_type=model_type, submodel=SubModelType.VaeDecoder, ), ), vae_encoder=VaeField( vae=ModelInfo( model_name=model_name, base_model=base_model, model_type=model_type, submodel=SubModelType.VaeEncoder, ), ), )