#!/usr/bin/env python3 # Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein) # Before running stable-diffusion on an internet-isolated machine, # run this script from one with internet connectivity. The # two machines must share a common .cache directory. # # Coauthor: Kevin Turner http://github.com/keturn # import argparse import sys import os import warnings from urllib import request from tqdm import tqdm from omegaconf import OmegaConf from pathlib import Path import traceback import getpass import requests # deferred loading so that help message can be printed quickly def load_libs(): print('Loading Python libraries...\n') import clip import transformers import torch import zipfile transformers.logging.set_verbosity_error() #--------------------------globals-- Model_dir = './models/ldm/stable-diffusion-v1/' Default_config_file = './configs/models.yaml' SD_Configs = './configs/stable-diffusion' Datasets = { 'stable-diffusion-1.5': { 'description': 'The newest Stable Diffusion version 1.5 weight file (4.27 GB)', 'repo_id': 'runwayml/stable-diffusion-v1-5', 'config': 'v1-inference.yaml', 'file': 'v1-5-pruned-emaonly.ckpt', 'recommended': True, 'width': 512, 'height': 512, }, 'inpainting-1.5': { 'description': 'RunwayML SD 1.5 model optimized for inpainting (4.27 GB)', 'repo_id': 'runwayml/stable-diffusion-inpainting', 'config': 'v1-inpainting-inference.yaml', 'file': 'sd-v1-5-inpainting.ckpt', 'recommended': True, 'width': 512, 'height': 512, }, 'stable-diffusion-1.4': { 'description': 'The original Stable Diffusion version 1.4 weight file (4.27 GB)', 'repo_id': 'CompVis/stable-diffusion-v-1-4-original', 'config': 'v1-inference.yaml', 'file': 'sd-v1-4.ckpt', 'recommended': False, 'width': 512, 'height': 512, }, 'waifu-diffusion-1.3': { 'description': 'Stable Diffusion 1.4 fine tuned on anime-styled images (4.27)', 'repo_id': 'hakurei/waifu-diffusion-v1-3', 'config': 'v1-inference.yaml', 'file': 'model-epoch09-float32.ckpt', 'recommended': False, 'width': 512, 'height': 512, }, 'ft-mse-improved-autoencoder-840000': { 'description': 'StabilityAI improved autoencoder fine-tuned for human faces (recommended; 335 MB)', 'repo_id': 'stabilityai/sd-vae-ft-mse-original', 'config': 'VAE', 'file': 'vae-ft-mse-840000-ema-pruned.ckpt', 'recommended': True, 'width': 512, 'height': 512, }, } Config_preamble = '''# This file describes the alternative machine learning models # available to InvokeAI script. # # To add a new model, follow the examples below. Each # model requires a model config file, a weights file, # and the width and height of the images it # was trained on. ''' #--------------------------------------------- def introduction(): print( '''Welcome to InvokeAI. This script will help download the Stable Diffusion weight files and other large models that are needed for text to image generation. At any point you may interrupt this program and resume later.\n''' ) #-------------------------------------------- def postscript(): print( '''You're all set! You may now launch InvokeAI using one of these two commands: Web version: python scripts/invoke.py --web (connect to http://localhost:9090) Command-line version: python scripts/invoke.py Have fun! ''' ) #--------------------------------------------- def yes_or_no(prompt:str, default_yes=True): default = "y" if default_yes else 'n' response = input(f'{prompt} [{default}] ') or default if default_yes: return response[0] not in ('n','N') else: return response[0] in ('y','Y') #--------------------------------------------- def user_wants_to_download_weights()->str: ''' Returns one of "skip", "recommended" or "customized" ''' print('''You can download and configure the weights files manually or let this script do it for you. Manual installation is described at: https://github.com/invoke-ai/InvokeAI/blob/main/docs/installation/INSTALLING_MODELS.md You may download the recommended models (about 10GB total), select a customized set, or completely skip this step. ''' ) selection = None while selection is None: choice = input('Download ecommended models, ustomize the list, or kip this step? [r]: ') if choice.startswith(('r','R')) or len(choice)==0: selection = 'recommended' elif choice.startswith(('c','C')): selection = 'customized' elif choice.startswith(('s','S')): selection = 'skip' return selection #--------------------------------------------- def select_datasets(action:str): done = False while not done: datasets = dict() dflt = None # the first model selected will be the default; TODO let user change counter = 1 if action == 'customized': print(''' Choose the weight file(s) you wish to download. Before downloading you will be given the option to view and change your selections. ''' ) for ds in Datasets.keys(): recommended = '(recommended)' if Datasets[ds]['recommended'] else '' print(f'[{counter}] {ds}:\n {Datasets[ds]["description"]} {recommended}') if yes_or_no(' Download?',default_yes=Datasets[ds]['recommended']): datasets[ds]=counter counter += 1 else: for ds in Datasets.keys(): if Datasets[ds]['recommended']: datasets[ds]=counter counter += 1 print('The following weight files will be downloaded:') for ds in datasets: dflt = '*' if dflt is None else '' print(f' [{datasets[ds]}] {ds}{dflt}') print("*default") ok_to_download = yes_or_no('Ok to download?') if not ok_to_download: if yes_or_no('Change your selection?'): action = 'customized' pass else: done = True else: done = True return datasets if ok_to_download else None #-------------------------------Authenticate against Hugging Face def authenticate(): print(''' To download the Stable Diffusion weight files from the official Hugging Face repository, you need to read and accept the CreativeML Responsible AI license. This involves a few easy steps. 1. If you have not already done so, create an account on Hugging Face's web site using the "Sign Up" button: https://huggingface.co/join You will need to verify your email address as part of the HuggingFace registration process. 2. Log into your Hugging Face account: https://huggingface.co/login 3. Accept the license terms located here: https://huggingface.co/runwayml/stable-diffusion-v1-5 and here: https://huggingface.co/runwayml/stable-diffusion-inpainting (Yes, you have to accept two slightly different license agreements) ''' ) input('Press when you are ready to continue:') from huggingface_hub import HfFolder access_token = HfFolder.get_token() if access_token is None: print(''' 4. Thank you! The last step is to enter your HuggingFace access token so that this script is authorized to initiate the download. Go to the access tokens page of your Hugging Face account and create a token by clicking the "New token" button: https://huggingface.co/settings/tokens (You can enter anything you like in the token creation field marked "Name". "Role" should be "read"). Now copy the token to your clipboard and paste it here: ''' ) access_token = getpass.getpass() HfFolder.save_token(access_token) return access_token #--------------------------------------------- # look for legacy model.ckpt in models directory and offer to # normalize its name def migrate_models_ckpt(): if not os.path.exists(os.path.join(Model_dir,'model.ckpt')): return new_name = Datasets['stable-diffusion-1.4']['file'] print('You seem to have the Stable Diffusion v4.1 "model.ckpt" already installed.') rename = yes_or_no(f'Ok to rename it to "{new_name}" for future reference?') if rename: print(f'model.ckpt => {new_name}') os.rename(os.path.join(Model_dir,'model.ckpt'),os.path.join(Model_dir,new_name)) #--------------------------------------------- def download_weight_datasets(models:dict, access_token:str): migrate_models_ckpt() successful = dict() for mod in models.keys(): repo_id = Datasets[mod]['repo_id'] filename = Datasets[mod]['file'] success = download_with_resume( repo_id=repo_id, model_name=filename, access_token=access_token ) if success: successful[mod] = True keys = ', '.join(successful.keys()) print(f'Successfully installed {keys}') return successful #--------------------------------------------- def download_with_resume(repo_id:str, model_name:str, access_token:str)->bool: from huggingface_hub import hf_hub_url model_dest = os.path.join(Model_dir, model_name) os.makedirs(os.path.dirname(model_dest), exist_ok=True) url = hf_hub_url(repo_id, model_name) header = {"Authorization": f'Bearer {access_token}'} open_mode = 'wb' exist_size = 0 if os.path.exists(model_dest): exist_size = os.path.getsize(model_dest) header['Range'] = f'bytes={exist_size}-' open_mode = 'ab' resp = requests.get(url, headers=header, stream=True) total = int(resp.headers.get('content-length', 0)) if resp.status_code==416: # "range not satisfiable", which means nothing to return print(f'* {model_name}: complete file found. Skipping.') return True elif exist_size > 0: print(f'* {model_name}: partial file found. Resuming...') else: print(f'* {model_name}: Downloading...') try: if total < 2000: print(f'* {model_name}: {resp.text}') return False with open(model_dest, open_mode) as file, tqdm( desc=model_name, initial=exist_size, total=total+exist_size, unit='iB', unit_scale=True, unit_divisor=1000, ) as bar: for data in resp.iter_content(chunk_size=1024): size = file.write(data) bar.update(size) except Exception as e: print(f'An error occurred while downloading {model_name}: {str(e)}') return False return True #--------------------------------------------- def update_config_file(successfully_downloaded:dict,opt:dict): Config_file = opt.config_file or Default_config_file yaml = new_config_file_contents(successfully_downloaded,Config_file) try: if os.path.exists(Config_file): print(f'** {Config_file} exists. Renaming to {Config_file}.orig') os.rename(Config_file,f'{Config_file}.orig') tmpfile = os.path.join(os.path.dirname(Config_file),'new_config.tmp') with open(tmpfile, 'w') as outfile: outfile.write(Config_preamble) outfile.write(yaml) os.rename(tmpfile,Config_file) except Exception as e: print(f'**Error creating config file {Config_file}: {str(e)} **') return print(f'Successfully created new configuration file {Config_file}') #--------------------------------------------- def new_config_file_contents(successfully_downloaded:dict, Config_file:str)->str: if os.path.exists(Config_file): conf = OmegaConf.load(Config_file) else: conf = OmegaConf.create() # find the VAE file, if there is one vae = None default_selected = False for model in successfully_downloaded: if Datasets[model]['config'] == 'VAE': vae = Datasets[model]['file'] for model in successfully_downloaded: if Datasets[model]['config'] == 'VAE': # skip VAE entries continue stanza = conf[model] if model in conf else { } stanza['description'] = Datasets[model]['description'] stanza['weights'] = os.path.join(Model_dir,Datasets[model]['file']) stanza['config'] =os.path.join(SD_Configs, Datasets[model]['config']) stanza['width'] = Datasets[model]['width'] stanza['height'] = Datasets[model]['height'] stanza.pop('default',None) # this will be set later if vae: stanza['vae'] = os.path.join(Model_dir,vae) # BUG - the first stanza is always the default. User should select. if not default_selected: stanza['default'] = True default_selected = True conf[model] = stanza return OmegaConf.to_yaml(conf) #--------------------------------------------- # this will preload the Bert tokenizer fles def download_bert(): print('Installing bert tokenizer (ignore deprecation errors)...', end='') from transformers import BertTokenizerFast, AutoFeatureExtractor with warnings.catch_warnings(): warnings.filterwarnings('ignore', category=DeprecationWarning) tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased') print('...success') sys.stdout.flush() #--------------------------------------------- # this will download requirements for Kornia def download_kornia(): print('Installing Kornia requirements...', end='') with warnings.catch_warnings(): warnings.filterwarnings('ignore', category=DeprecationWarning) import kornia print('...success') #--------------------------------------------- def download_clip(): print('Loading CLIP model...',end='') from transformers import CLIPTokenizer, CLIPTextModel sys.stdout.flush() version = 'openai/clip-vit-large-patch14' tokenizer = CLIPTokenizer.from_pretrained(version) transformer = CLIPTextModel.from_pretrained(version) print('...success') #--------------------------------------------- def download_gfpgan(): print('Installing models from RealESRGAN and facexlib...',end='') try: from realesrgan import RealESRGANer from realesrgan.archs.srvgg_arch import SRVGGNetCompact from facexlib.utils.face_restoration_helper import FaceRestoreHelper RealESRGANer( scale=4, model_path='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth', model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') ) FaceRestoreHelper(1, det_model='retinaface_resnet50') print('...success') except Exception: print('Error loading ESRGAN:') print(traceback.format_exc()) print('Loading models from GFPGAN') for model in ( [ 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth', 'src/gfpgan/experiments/pretrained_models/GFPGANv1.4.pth' ], [ 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth', './gfpgan/weights/detection_Resnet50_Final.pth' ], [ 'https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth', './gfpgan/weights/parsing_parsenet.pth' ], ): model_url,model_dest = model try: if not os.path.exists(model_dest): print(f'Downloading gfpgan model file {model_url}...',end='') os.makedirs(os.path.dirname(model_dest), exist_ok=True) request.urlretrieve(model_url,model_dest) print('...success') except Exception: print('Error loading GFPGAN:') print(traceback.format_exc()) #--------------------------------------------- def download_codeformer(): print('Installing CodeFormer model file...',end='') try: model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth' model_dest = 'ldm/invoke/restoration/codeformer/weights/codeformer.pth' if not os.path.exists(model_dest): print('Downloading codeformer model file...') os.makedirs(os.path.dirname(model_dest), exist_ok=True) request.urlretrieve(model_url,model_dest) except Exception: print('Error loading CodeFormer:') print(traceback.format_exc()) print('...success') #--------------------------------------------- def download_clipseg(): print('Installing clipseg model for text-based masking...',end='') try: model_url = 'https://owncloud.gwdg.de/index.php/s/ioHbRzFx6th32hn/download' model_dest = 'src/clipseg/clipseg_weights.zip' weights_dir = 'src/clipseg/weights' if not os.path.exists(weights_dir): os.makedirs(os.path.dirname(model_dest), exist_ok=True) request.urlretrieve(model_url,model_dest) with zipfile.ZipFile(model_dest,'r') as zip: zip.extractall('src/clipseg') os.rename('src/clipseg/clipseg_weights','src/clipseg/weights') os.remove(model_dest) from clipseg_models.clipseg import CLIPDensePredT model = CLIPDensePredT(version='ViT-B/16', reduce_dim=64, ) model.eval() model.load_state_dict( torch.load( 'src/clipseg/weights/rd64-uni-refined.pth', map_location=torch.device('cpu') ), strict=False, ) except Exception: print('Error installing clipseg model:') print(traceback.format_exc()) print('...success') #------------------------------------- def download_safety_checker(): print('Installing safety model for NSFW content detection...',end='') try: from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from transformers import AutoFeatureExtractor except ModuleNotFoundError: print('Error installing safety checker model:') print(traceback.format_exc()) return safety_model_id = "CompVis/stable-diffusion-safety-checker" safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id) safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id) print('...success') #------------------------------------- if __name__ == '__main__': parser = argparse.ArgumentParser(description='InvokeAI model downloader') parser.add_argument('--interactive', dest='interactive', action=argparse.BooleanOptionalAction, default=True, help='run in interactive mode (default)') parser.add_argument('--config_file', '-c', dest='config_file', type=str, default='./configs/models.yaml', help='path to configuration file to create') opt = parser.parse_args() load_libs() try: if opt.interactive: introduction() print('** WEIGHT SELECTION **') choice = user_wants_to_download_weights() if choice != 'skip': models = select_datasets(choice) if models is None: if yes_or_no('Quit?',default_yes=False): sys.exit(0) print('** LICENSE AGREEMENT FOR WEIGHT FILES **') access_token = authenticate() print('\n** DOWNLOADING WEIGHTS **') successfully_downloaded = download_weight_datasets(models, access_token) update_config_file(successfully_downloaded,opt) print('\n** DOWNLOADING SUPPORT MODELS **') download_bert() download_kornia() download_clip() download_gfpgan() download_codeformer() download_clipseg() download_safety_checker() postscript() except KeyboardInterrupt: print('\nGoodbye! Come back soon.') except Exception as e: print(f'\nA problem occurred during download.\nThe error was: "{str(e)}"')