# Code from the original DWPose Implementation: https://github.com/IDEA-Research/DWPose from typing import List, Tuple import cv2 import numpy as np import onnxruntime as ort def preprocess( img: np.ndarray, out_bbox, input_size: Tuple[int, int] = (192, 256) ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """Do preprocessing for RTMPose model inference. Args: img (np.ndarray): Input image in shape. input_size (tuple): Input image size in shape (w, h). Returns: tuple: - resized_img (np.ndarray): Preprocessed image. - center (np.ndarray): Center of image. - scale (np.ndarray): Scale of image. """ # get shape of image img_shape = img.shape[:2] out_img, out_center, out_scale = [], [], [] if len(out_bbox) == 0: out_bbox = [[0, 0, img_shape[1], img_shape[0]]] for i in range(len(out_bbox)): x0 = out_bbox[i][0] y0 = out_bbox[i][1] x1 = out_bbox[i][2] y1 = out_bbox[i][3] bbox = np.array([x0, y0, x1, y1]) # get center and scale center, scale = bbox_xyxy2cs(bbox, padding=1.25) # do affine transformation resized_img, scale = top_down_affine(input_size, scale, center, img) # normalize image mean = np.array([123.675, 116.28, 103.53]) std = np.array([58.395, 57.12, 57.375]) resized_img = (resized_img - mean) / std out_img.append(resized_img) out_center.append(center) out_scale.append(scale) return out_img, out_center, out_scale def inference(sess: ort.InferenceSession, img: np.ndarray) -> np.ndarray: """Inference RTMPose model. Args: sess (ort.InferenceSession): ONNXRuntime session. img (np.ndarray): Input image in shape. Returns: outputs (np.ndarray): Output of RTMPose model. """ all_out = [] # build input for i in range(len(img)): input = [img[i].transpose(2, 0, 1)] # build output sess_input = {sess.get_inputs()[0].name: input} sess_output = [] for out in sess.get_outputs(): sess_output.append(out.name) # run model outputs = sess.run(sess_output, sess_input) all_out.append(outputs) return all_out def postprocess( outputs: List[np.ndarray], model_input_size: Tuple[int, int], center: Tuple[int, int], scale: Tuple[int, int], simcc_split_ratio: float = 2.0, ) -> Tuple[np.ndarray, np.ndarray]: """Postprocess for RTMPose model output. Args: outputs (np.ndarray): Output of RTMPose model. model_input_size (tuple): RTMPose model Input image size. center (tuple): Center of bbox in shape (x, y). scale (tuple): Scale of bbox in shape (w, h). simcc_split_ratio (float): Split ratio of simcc. Returns: tuple: - keypoints (np.ndarray): Rescaled keypoints. - scores (np.ndarray): Model predict scores. """ all_key = [] all_score = [] for i in range(len(outputs)): # use simcc to decode simcc_x, simcc_y = outputs[i] keypoints, scores = decode(simcc_x, simcc_y, simcc_split_ratio) # rescale keypoints keypoints = keypoints / model_input_size * scale[i] + center[i] - scale[i] / 2 all_key.append(keypoints[0]) all_score.append(scores[0]) return np.array(all_key), np.array(all_score) def bbox_xyxy2cs(bbox: np.ndarray, padding: float = 1.0) -> Tuple[np.ndarray, np.ndarray]: """Transform the bbox format from (x,y,w,h) into (center, scale) Args: bbox (ndarray): Bounding box(es) in shape (4,) or (n, 4), formatted as (left, top, right, bottom) padding (float): BBox padding factor that will be multilied to scale. Default: 1.0 Returns: tuple: A tuple containing center and scale. - np.ndarray[float32]: Center (x, y) of the bbox in shape (2,) or (n, 2) - np.ndarray[float32]: Scale (w, h) of the bbox in shape (2,) or (n, 2) """ # convert single bbox from (4, ) to (1, 4) dim = bbox.ndim if dim == 1: bbox = bbox[None, :] # get bbox center and scale x1, y1, x2, y2 = np.hsplit(bbox, [1, 2, 3]) center = np.hstack([x1 + x2, y1 + y2]) * 0.5 scale = np.hstack([x2 - x1, y2 - y1]) * padding if dim == 1: center = center[0] scale = scale[0] return center, scale def _fix_aspect_ratio(bbox_scale: np.ndarray, aspect_ratio: float) -> np.ndarray: """Extend the scale to match the given aspect ratio. Args: scale (np.ndarray): The image scale (w, h) in shape (2, ) aspect_ratio (float): The ratio of ``w/h`` Returns: np.ndarray: The reshaped image scale in (2, ) """ w, h = np.hsplit(bbox_scale, [1]) bbox_scale = np.where(w > h * aspect_ratio, np.hstack([w, w / aspect_ratio]), np.hstack([h * aspect_ratio, h])) return bbox_scale def _rotate_point(pt: np.ndarray, angle_rad: float) -> np.ndarray: """Rotate a point by an angle. Args: pt (np.ndarray): 2D point coordinates (x, y) in shape (2, ) angle_rad (float): rotation angle in radian Returns: np.ndarray: Rotated point in shape (2, ) """ sn, cs = np.sin(angle_rad), np.cos(angle_rad) rot_mat = np.array([[cs, -sn], [sn, cs]]) return rot_mat @ pt def _get_3rd_point(a: np.ndarray, b: np.ndarray) -> np.ndarray: """To calculate the affine matrix, three pairs of points are required. This function is used to get the 3rd point, given 2D points a & b. The 3rd point is defined by rotating vector `a - b` by 90 degrees anticlockwise, using b as the rotation center. Args: a (np.ndarray): The 1st point (x,y) in shape (2, ) b (np.ndarray): The 2nd point (x,y) in shape (2, ) Returns: np.ndarray: The 3rd point. """ direction = a - b c = b + np.r_[-direction[1], direction[0]] return c def get_warp_matrix( center: np.ndarray, scale: np.ndarray, rot: float, output_size: Tuple[int, int], shift: Tuple[float, float] = (0.0, 0.0), inv: bool = False, ) -> np.ndarray: """Calculate the affine transformation matrix that can warp the bbox area in the input image to the output size. Args: center (np.ndarray[2, ]): Center of the bounding box (x, y). scale (np.ndarray[2, ]): Scale of the bounding box wrt [width, height]. rot (float): Rotation angle (degree). output_size (np.ndarray[2, ] | list(2,)): Size of the destination heatmaps. shift (0-100%): Shift translation ratio wrt the width/height. Default (0., 0.). inv (bool): Option to inverse the affine transform direction. (inv=False: src->dst or inv=True: dst->src) Returns: np.ndarray: A 2x3 transformation matrix """ shift = np.array(shift) src_w = scale[0] dst_w = output_size[0] dst_h = output_size[1] # compute transformation matrix rot_rad = np.deg2rad(rot) src_dir = _rotate_point(np.array([0.0, src_w * -0.5]), rot_rad) dst_dir = np.array([0.0, dst_w * -0.5]) # get four corners of the src rectangle in the original image src = np.zeros((3, 2), dtype=np.float32) src[0, :] = center + scale * shift src[1, :] = center + src_dir + scale * shift src[2, :] = _get_3rd_point(src[0, :], src[1, :]) # get four corners of the dst rectangle in the input image dst = np.zeros((3, 2), dtype=np.float32) dst[0, :] = [dst_w * 0.5, dst_h * 0.5] dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :]) if inv: warp_mat = cv2.getAffineTransform(np.float32(dst), np.float32(src)) else: warp_mat = cv2.getAffineTransform(np.float32(src), np.float32(dst)) return warp_mat def top_down_affine( input_size: dict, bbox_scale: dict, bbox_center: dict, img: np.ndarray ) -> Tuple[np.ndarray, np.ndarray]: """Get the bbox image as the model input by affine transform. Args: input_size (dict): The input size of the model. bbox_scale (dict): The bbox scale of the img. bbox_center (dict): The bbox center of the img. img (np.ndarray): The original image. Returns: tuple: A tuple containing center and scale. - np.ndarray[float32]: img after affine transform. - np.ndarray[float32]: bbox scale after affine transform. """ w, h = input_size warp_size = (int(w), int(h)) # reshape bbox to fixed aspect ratio bbox_scale = _fix_aspect_ratio(bbox_scale, aspect_ratio=w / h) # get the affine matrix center = bbox_center scale = bbox_scale rot = 0 warp_mat = get_warp_matrix(center, scale, rot, output_size=(w, h)) # do affine transform img = cv2.warpAffine(img, warp_mat, warp_size, flags=cv2.INTER_LINEAR) return img, bbox_scale def get_simcc_maximum(simcc_x: np.ndarray, simcc_y: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Get maximum response location and value from simcc representations. Note: instance number: N num_keypoints: K heatmap height: H heatmap width: W Args: simcc_x (np.ndarray): x-axis SimCC in shape (K, Wx) or (N, K, Wx) simcc_y (np.ndarray): y-axis SimCC in shape (K, Wy) or (N, K, Wy) Returns: tuple: - locs (np.ndarray): locations of maximum heatmap responses in shape (K, 2) or (N, K, 2) - vals (np.ndarray): values of maximum heatmap responses in shape (K,) or (N, K) """ N, K, Wx = simcc_x.shape simcc_x = simcc_x.reshape(N * K, -1) simcc_y = simcc_y.reshape(N * K, -1) # get maximum value locations x_locs = np.argmax(simcc_x, axis=1) y_locs = np.argmax(simcc_y, axis=1) locs = np.stack((x_locs, y_locs), axis=-1).astype(np.float32) max_val_x = np.amax(simcc_x, axis=1) max_val_y = np.amax(simcc_y, axis=1) # get maximum value across x and y axis mask = max_val_x > max_val_y max_val_x[mask] = max_val_y[mask] vals = max_val_x locs[vals <= 0.0] = -1 # reshape locs = locs.reshape(N, K, 2) vals = vals.reshape(N, K) return locs, vals def decode(simcc_x: np.ndarray, simcc_y: np.ndarray, simcc_split_ratio) -> Tuple[np.ndarray, np.ndarray]: """Modulate simcc distribution with Gaussian. Args: simcc_x (np.ndarray[K, Wx]): model predicted simcc in x. simcc_y (np.ndarray[K, Wy]): model predicted simcc in y. simcc_split_ratio (int): The split ratio of simcc. Returns: tuple: A tuple containing center and scale. - np.ndarray[float32]: keypoints in shape (K, 2) or (n, K, 2) - np.ndarray[float32]: scores in shape (K,) or (n, K) """ keypoints, scores = get_simcc_maximum(simcc_x, simcc_y) keypoints /= simcc_split_ratio return keypoints, scores def inference_pose(session, out_bbox, oriImg): h, w = session.get_inputs()[0].shape[2:] model_input_size = (w, h) resized_img, center, scale = preprocess(oriImg, out_bbox, model_input_size) outputs = inference(session, resized_img) keypoints, scores = postprocess(outputs, model_input_size, center, scale) return keypoints, scores