''' ldm.invoke.generator.txt2img inherits from ldm.invoke.generator ''' import torch import numpy as np import math from ldm.invoke.generator.base import Generator from ldm.models.diffusion.ddim import DDIMSampler from ldm.invoke.generator.omnibus import Omnibus from ldm.models.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent from PIL import Image class Txt2Img2Img(Generator): def __init__(self, model, precision): super().__init__(model, precision) self.init_latent = None # for get_noise() @torch.no_grad() def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta, conditioning,width,height,strength,step_callback=None,**kwargs): """ Returns a function returning an image derived from the prompt and the initial image Return value depends on the seed at the time you call it kwargs are 'width' and 'height' """ uc, c, extra_conditioning_info = conditioning scale_dim = min(width, height) scale = 512 / scale_dim init_width = math.ceil(scale * width / 64) * 64 init_height = math.ceil(scale * height / 64) * 64 @torch.no_grad() def make_image(x_T): shape = [ self.latent_channels, init_height // self.downsampling_factor, init_width // self.downsampling_factor, ] sampler.make_schedule( ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False ) #x = self.get_noise(init_width, init_height) x = x_T if self.free_gpu_mem and self.model.model.device != self.model.device: self.model.model.to(self.model.device) samples, _ = sampler.sample( batch_size = 1, S = steps, x_T = x, conditioning = c, shape = shape, verbose = False, unconditional_guidance_scale = cfg_scale, unconditional_conditioning = uc, eta = ddim_eta, img_callback = step_callback, extra_conditioning_info = extra_conditioning_info ) print( f"\n>> Interpolating from {init_width}x{init_height} to {width}x{height} using DDIM sampling" ) # resizing samples = torch.nn.functional.interpolate( samples, size=(height // self.downsampling_factor, width // self.downsampling_factor), mode="bilinear" ) t_enc = int(strength * steps) ddim_sampler = DDIMSampler(self.model, device=self.model.device) ddim_sampler.make_schedule( ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False ) z_enc = ddim_sampler.stochastic_encode( samples, torch.tensor([t_enc]).to(self.model.device), noise=self.get_noise(width,height,False) ) # decode it samples = ddim_sampler.decode( z_enc, c, t_enc, img_callback = step_callback, unconditional_guidance_scale=cfg_scale, unconditional_conditioning=uc, extra_conditioning_info=extra_conditioning_info, all_timesteps_count=steps ) if self.free_gpu_mem: self.model.model.to("cpu") return self.sample_to_image(samples) # in the case of the inpainting model being loaded, the trick of # providing an interpolated latent doesn't work, so we transiently # create a 512x512 PIL image, upscale it, and run the inpainting # over it in img2img mode. Because the inpaing model is so conservative # it doesn't change the image (much) def inpaint_make_image(x_T): omnibus = Omnibus(self.model,self.precision) result = omnibus.generate( prompt, sampler=sampler, width=init_width, height=init_height, step_callback=step_callback, steps = steps, cfg_scale = cfg_scale, ddim_eta = ddim_eta, conditioning = conditioning, **kwargs ) assert result is not None and len(result)>0,'** txt2img failed **' image = result[0][0] interpolated_image = image.resize((width,height),resample=Image.Resampling.LANCZOS) print(kwargs.pop('init_image',None)) result = omnibus.generate( prompt, sampler=sampler, init_image=interpolated_image, width=width, height=height, seed=result[0][1], step_callback=step_callback, steps = steps, cfg_scale = cfg_scale, ddim_eta = ddim_eta, conditioning = conditioning, **kwargs ) return result[0][0] if sampler.uses_inpainting_model(): return inpaint_make_image else: return make_image # returns a tensor filled with random numbers from a normal distribution def get_noise(self,width,height,scale = True): # print(f"Get noise: {width}x{height}") if scale: trained_square = 512 * 512 actual_square = width * height scale = math.sqrt(trained_square / actual_square) scaled_width = math.ceil(scale * width / 64) * 64 scaled_height = math.ceil(scale * height / 64) * 64 else: scaled_width = width scaled_height = height device = self.model.device if self.use_mps_noise or device.type == 'mps': return torch.randn([1, self.latent_channels, scaled_height // self.downsampling_factor, scaled_width // self.downsampling_factor], device='cpu').to(device) else: return torch.randn([1, self.latent_channels, scaled_height // self.downsampling_factor, scaled_width // self.downsampling_factor], device=device)