import os.path from cmath import log import torch from torch import nn import sys from ldm.invoke.concepts_lib import Concepts from ldm.data.personalized import per_img_token_list from transformers import CLIPTokenizer from functools import partial from picklescan.scanner import scan_file_path PROGRESSIVE_SCALE = 2000 def get_clip_token_for_string(tokenizer, string): batch_encoding = tokenizer( string, truncation=True, max_length=77, return_length=True, return_overflowing_tokens=False, padding='max_length', return_tensors='pt', ) tokens = batch_encoding['input_ids'] """ assert ( torch.count_nonzero(tokens - 49407) == 2 ), f"String '{string}' maps to more than a single token. Please use another string" """ return tokens[0, 1] def get_bert_token_for_string(tokenizer, string): token = tokenizer(string) # assert torch.count_nonzero(token) == 3, f"String '{string}' maps to more than a single token. Please use another string" token = token[0, 1] return token def get_embedding_for_clip_token(embedder, token): return embedder(token.unsqueeze(0))[0, 0] class EmbeddingManager(nn.Module): def __init__( self, embedder, placeholder_strings=None, initializer_words=None, per_image_tokens=False, num_vectors_per_token=1, progressive_words=False, **kwargs, ): super().__init__() self.embedder = embedder self.concepts_library=Concepts() self.concepts_loaded = dict() self.string_to_token_dict = {} self.string_to_param_dict = nn.ParameterDict() self.initial_embeddings = ( nn.ParameterDict() ) # These should not be optimized self.progressive_words = progressive_words self.progressive_counter = 0 self.max_vectors_per_token = num_vectors_per_token if hasattr( embedder, 'tokenizer' ): # using Stable Diffusion's CLIP encoder self.is_clip = True get_token_for_string = partial( get_clip_token_for_string, embedder.tokenizer ) get_embedding_for_tkn = partial( get_embedding_for_clip_token, embedder.transformer.text_model.embeddings, ) # per bug report #572 #token_dim = 1280 token_dim = 768 else: # using LDM's BERT encoder self.is_clip = False get_token_for_string = partial( get_bert_token_for_string, embedder.tknz_fn ) get_embedding_for_tkn = embedder.transformer.token_emb token_dim = 1280 if per_image_tokens: placeholder_strings.extend(per_img_token_list) for idx, placeholder_string in enumerate(placeholder_strings): token = get_token_for_string(placeholder_string) if initializer_words and idx < len(initializer_words): init_word_token = get_token_for_string(initializer_words[idx]) with torch.no_grad(): init_word_embedding = get_embedding_for_tkn( init_word_token.cpu() ) token_params = torch.nn.Parameter( init_word_embedding.unsqueeze(0).repeat( num_vectors_per_token, 1 ), requires_grad=True, ) self.initial_embeddings[ placeholder_string ] = torch.nn.Parameter( init_word_embedding.unsqueeze(0).repeat( num_vectors_per_token, 1 ), requires_grad=False, ) else: token_params = torch.nn.Parameter( torch.rand( size=(num_vectors_per_token, token_dim), requires_grad=True, ) ) self.string_to_token_dict[placeholder_string] = token self.string_to_param_dict[placeholder_string] = token_params def forward( self, tokenized_text, embedded_text, ): b, n, device = *tokenized_text.shape, tokenized_text.device for ( placeholder_string, placeholder_token, ) in self.string_to_token_dict.items(): placeholder_embedding = self.string_to_param_dict[ placeholder_string ].to(device) if self.progressive_words: self.progressive_counter += 1 max_step_tokens = ( 1 + self.progressive_counter // PROGRESSIVE_SCALE ) else: max_step_tokens = self.max_vectors_per_token num_vectors_for_token = min( placeholder_embedding.shape[0], max_step_tokens ) placeholder_rows, placeholder_cols = torch.where( tokenized_text == placeholder_token.to(tokenized_text.device) ) if placeholder_rows.nelement() == 0: continue sorted_cols, sort_idx = torch.sort( placeholder_cols, descending=True ) sorted_rows = placeholder_rows[sort_idx] for idx in range(sorted_rows.shape[0]): row = sorted_rows[idx] col = sorted_cols[idx] new_token_row = torch.cat( [ tokenized_text[row][:col], placeholder_token.repeat(num_vectors_for_token).to( device ), tokenized_text[row][col + 1 :], ], axis=0, )[:n] new_embed_row = torch.cat( [ embedded_text[row][:col], placeholder_embedding[:num_vectors_for_token], embedded_text[row][col + 1 :], ], axis=0, )[:n] embedded_text[row] = new_embed_row tokenized_text[row] = new_token_row return embedded_text def save(self, ckpt_path): torch.save( { 'string_to_token': self.string_to_token_dict, 'string_to_param': self.string_to_param_dict, }, ckpt_path, ) def load_concepts(self, concepts:list[str], full=True): bin_files = list() for concept_name in concepts: if concept_name in self.concepts_loaded: continue else: bin_file = self.concepts_library.get_concept_model_path(concept_name) if not bin_file: continue bin_files.append(bin_file) self.concepts_loaded[concept_name]=True self.load(bin_files, full) def list_terms(self) -> list[str]: return self.concepts_loaded.keys() def load(self, ckpt_paths, full=True): if len(ckpt_paths) == 0: return if type(ckpt_paths) != list: ckpt_paths = [ckpt_paths] ckpt_paths = self._expand_directories(ckpt_paths) for c in ckpt_paths: self._load(c,full) # remember that we know this term and don't try to download it again from the concepts library # note that if the concept name is also provided and different from the trigger term, they # both will be stored in this dictionary for term in self.string_to_param_dict.keys(): term = term.strip('<').strip('>') self.concepts_loaded[term] = True print(f'>> Current embedding manager terms: {", ".join(self.string_to_param_dict.keys())}') def _expand_directories(self, paths:list[str]): expanded_paths = list() for path in paths: if os.path.isfile(path): expanded_paths.append(path) elif os.path.isdir(path): for root, _, files in os.walk(path): for name in files: expanded_paths.append(os.path.join(root,name)) return [x for x in expanded_paths if os.path.splitext(x)[1] in ('.pt','.bin')] def _load(self, ckpt_path, full=True): scan_result = scan_file_path(ckpt_path) if scan_result.infected_files == 1: print(f'\n### Security Issues Found in Model: {scan_result.issues_count}') print('### For your safety, InvokeAI will not load this embed.') return ckpt = torch.load(ckpt_path, map_location='cpu') # Handle .pt textual inversion files if 'string_to_token' in ckpt and 'string_to_param' in ckpt: filename = os.path.basename(ckpt_path) token_str = '.'.join(filename.split('.')[:-1]) # filename excluding extension if len(ckpt["string_to_token"]) > 1: print(f">> {ckpt_path} has >1 embedding, only the first will be used") string_to_param_dict = ckpt['string_to_param'] embedding = list(string_to_param_dict.values())[0] self.add_embedding(token_str, embedding, full) # Handle .bin textual inversion files from Huggingface Concepts # https://huggingface.co/sd-concepts-library else: for token_str in list(ckpt.keys()): embedding = ckpt[token_str] self.add_embedding(token_str, embedding, full) def add_embedding(self, token_str, embedding, full): if token_str in self.string_to_param_dict: print(f">> Embedding manager refusing to overwrite already-loaded term '{token_str}'") return if not full: embedding = embedding.half() if len(embedding.shape) == 1: embedding = embedding.unsqueeze(0) num_tokens_added = self.embedder.tokenizer.add_tokens(token_str) current_embeddings = self.embedder.transformer.resize_token_embeddings(None) current_token_count = current_embeddings.num_embeddings new_token_count = current_token_count + num_tokens_added self.embedder.transformer.resize_token_embeddings(new_token_count) token = get_clip_token_for_string(self.embedder.tokenizer, token_str) self.string_to_token_dict[token_str] = token self.string_to_param_dict[token_str] = torch.nn.Parameter(embedding) def has_embedding_for_token(self, token_str): return token_str in self.string_to_token_dict def get_embedding_norms_squared(self): all_params = torch.cat( list(self.string_to_param_dict.values()), axis=0 ) # num_placeholders x embedding_dim param_norm_squared = (all_params * all_params).sum( axis=-1 ) # num_placeholders return param_norm_squared def embedding_parameters(self): return self.string_to_param_dict.parameters() def embedding_to_coarse_loss(self): loss = 0.0 num_embeddings = len(self.initial_embeddings) for key in self.initial_embeddings: optimized = self.string_to_param_dict[key] coarse = self.initial_embeddings[key].clone().to(optimized.device) loss = ( loss + (optimized - coarse) @ (optimized - coarse).T / num_embeddings ) return loss