#!/usr/bin/env python """ This is the frontend to "textual_inversion_training.py". Copyright (c) 2023 Lincoln Stein and the InvokeAI Development Team """ import os import re import shutil import sys import traceback from argparse import Namespace from pathlib import Path from typing import List, Tuple import npyscreen from npyscreen import widget from omegaconf import OmegaConf import invokeai.backend.util.logging as logger from invokeai.backend.globals import Globals, global_set_root from ...backend.training import do_textual_inversion_training, parse_args TRAINING_DATA = "text-inversion-training-data" TRAINING_DIR = "text-inversion-output" CONF_FILE = "preferences.conf" class textualInversionForm(npyscreen.FormMultiPageAction): resolutions = [512, 768, 1024] lr_schedulers = [ "linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup", ] precisions = ["no", "fp16", "bf16"] learnable_properties = ["object", "style"] def __init__(self, parentApp, name, saved_args=None): self.saved_args = saved_args or {} super().__init__(parentApp, name) def afterEditing(self): self.parentApp.setNextForm(None) def create(self): self.model_names, default = self.get_model_names() default_initializer_token = "★" default_placeholder_token = "" saved_args = self.saved_args try: default = self.model_names.index(saved_args["model"]) except: pass self.add_widget_intelligent( npyscreen.FixedText, value="Use ctrl-N and ctrl-P to move to the ext and

revious fields, cursor arrows to make a selection, and space to toggle checkboxes.", editable=False, ) self.model = self.add_widget_intelligent( npyscreen.TitleSelectOne, name="Model Name:", values=self.model_names, value=default, max_height=len(self.model_names) + 1, scroll_exit=True, ) self.placeholder_token = self.add_widget_intelligent( npyscreen.TitleText, name="Trigger Term:", value="", # saved_args.get('placeholder_token',''), # to restore previous term scroll_exit=True, ) self.placeholder_token.when_value_edited = self.initializer_changed self.nextrely -= 1 self.nextrelx += 30 self.prompt_token = self.add_widget_intelligent( npyscreen.FixedText, name="Trigger term for use in prompt", value="", editable=False, scroll_exit=True, ) self.nextrelx -= 30 self.initializer_token = self.add_widget_intelligent( npyscreen.TitleText, name="Initializer:", value=saved_args.get("initializer_token", default_initializer_token), scroll_exit=True, ) self.resume_from_checkpoint = self.add_widget_intelligent( npyscreen.Checkbox, name="Resume from last saved checkpoint", value=False, scroll_exit=True, ) self.learnable_property = self.add_widget_intelligent( npyscreen.TitleSelectOne, name="Learnable property:", values=self.learnable_properties, value=self.learnable_properties.index( saved_args.get("learnable_property", "object") ), max_height=4, scroll_exit=True, ) self.train_data_dir = self.add_widget_intelligent( npyscreen.TitleFilename, name="Data Training Directory:", select_dir=True, must_exist=False, value=str( saved_args.get( "train_data_dir", Path(Globals.root) / TRAINING_DATA / default_placeholder_token, ) ), scroll_exit=True, ) self.output_dir = self.add_widget_intelligent( npyscreen.TitleFilename, name="Output Destination Directory:", select_dir=True, must_exist=False, value=str( saved_args.get( "output_dir", Path(Globals.root) / TRAINING_DIR / default_placeholder_token, ) ), scroll_exit=True, ) self.resolution = self.add_widget_intelligent( npyscreen.TitleSelectOne, name="Image resolution (pixels):", values=self.resolutions, value=self.resolutions.index(saved_args.get("resolution", 512)), max_height=4, scroll_exit=True, ) self.center_crop = self.add_widget_intelligent( npyscreen.Checkbox, name="Center crop images before resizing to resolution", value=saved_args.get("center_crop", False), scroll_exit=True, ) self.mixed_precision = self.add_widget_intelligent( npyscreen.TitleSelectOne, name="Mixed Precision:", values=self.precisions, value=self.precisions.index(saved_args.get("mixed_precision", "fp16")), max_height=4, scroll_exit=True, ) self.num_train_epochs = self.add_widget_intelligent( npyscreen.TitleSlider, name="Number of training epochs:", out_of=1000, step=50, lowest=1, value=saved_args.get("num_train_epochs", 100), scroll_exit=True, ) self.max_train_steps = self.add_widget_intelligent( npyscreen.TitleSlider, name="Max Training Steps:", out_of=10000, step=500, lowest=1, value=saved_args.get("max_train_steps", 3000), scroll_exit=True, ) self.train_batch_size = self.add_widget_intelligent( npyscreen.TitleSlider, name="Batch Size (reduce if you run out of memory):", out_of=50, step=1, lowest=1, value=saved_args.get("train_batch_size", 8), scroll_exit=True, ) self.gradient_accumulation_steps = self.add_widget_intelligent( npyscreen.TitleSlider, name="Gradient Accumulation Steps (may need to decrease this to resume from a checkpoint):", out_of=10, step=1, lowest=1, value=saved_args.get("gradient_accumulation_steps", 4), scroll_exit=True, ) self.lr_warmup_steps = self.add_widget_intelligent( npyscreen.TitleSlider, name="Warmup Steps:", out_of=100, step=1, lowest=0, value=saved_args.get("lr_warmup_steps", 0), scroll_exit=True, ) self.learning_rate = self.add_widget_intelligent( npyscreen.TitleText, name="Learning Rate:", value=str( saved_args.get("learning_rate", "5.0e-04"), ), scroll_exit=True, ) self.scale_lr = self.add_widget_intelligent( npyscreen.Checkbox, name="Scale learning rate by number GPUs, steps and batch size", value=saved_args.get("scale_lr", True), scroll_exit=True, ) self.enable_xformers_memory_efficient_attention = self.add_widget_intelligent( npyscreen.Checkbox, name="Use xformers acceleration", value=saved_args.get("enable_xformers_memory_efficient_attention", False), scroll_exit=True, ) self.lr_scheduler = self.add_widget_intelligent( npyscreen.TitleSelectOne, name="Learning rate scheduler:", values=self.lr_schedulers, max_height=7, value=self.lr_schedulers.index(saved_args.get("lr_scheduler", "constant")), scroll_exit=True, ) self.model.editing = True def initializer_changed(self): placeholder = self.placeholder_token.value self.prompt_token.value = f"(Trigger by using <{placeholder}> in your prompts)" self.train_data_dir.value = str( Path(Globals.root) / TRAINING_DATA / placeholder ) self.output_dir.value = str(Path(Globals.root) / TRAINING_DIR / placeholder) self.resume_from_checkpoint.value = Path(self.output_dir.value).exists() def on_ok(self): if self.validate_field_values(): self.parentApp.setNextForm(None) self.editing = False self.parentApp.ti_arguments = self.marshall_arguments() npyscreen.notify( "Launching textual inversion training. This will take a while..." ) else: self.editing = True def ok_cancel(self): sys.exit(0) def validate_field_values(self) -> bool: bad_fields = [] if self.model.value is None: bad_fields.append( "Model Name must correspond to a known model in models.yaml" ) if not re.match("^[a-zA-Z0-9.-]+$", self.placeholder_token.value): bad_fields.append( "Trigger term must only contain alphanumeric characters, the dot and hyphen" ) if self.train_data_dir.value is None: bad_fields.append("Data Training Directory cannot be empty") if self.output_dir.value is None: bad_fields.append("The Output Destination Directory cannot be empty") if len(bad_fields) > 0: message = "The following problems were detected and must be corrected:" for problem in bad_fields: message += f"\n* {problem}" npyscreen.notify_confirm(message) return False else: return True def get_model_names(self) -> Tuple[List[str], int]: conf = OmegaConf.load(os.path.join(Globals.root, "configs/models.yaml")) model_names = [ idx for idx in sorted(list(conf.keys())) if conf[idx].get("format", None) == "diffusers" ] defaults = [ idx for idx in range(len(model_names)) if "default" in conf[model_names[idx]] ] default = defaults[0] if len(defaults) > 0 else 0 return (model_names, default) def marshall_arguments(self) -> dict: args = dict() # the choices args.update( model=self.model_names[self.model.value[0]], resolution=self.resolutions[self.resolution.value[0]], lr_scheduler=self.lr_schedulers[self.lr_scheduler.value[0]], mixed_precision=self.precisions[self.mixed_precision.value[0]], learnable_property=self.learnable_properties[ self.learnable_property.value[0] ], ) # all the strings and booleans for attr in ( "initializer_token", "placeholder_token", "train_data_dir", "output_dir", "scale_lr", "center_crop", "enable_xformers_memory_efficient_attention", ): args[attr] = getattr(self, attr).value # all the integers for attr in ( "train_batch_size", "gradient_accumulation_steps", "num_train_epochs", "max_train_steps", "lr_warmup_steps", ): args[attr] = int(getattr(self, attr).value) # the floats (just one) args.update(learning_rate=float(self.learning_rate.value)) # a special case if self.resume_from_checkpoint.value and Path(self.output_dir.value).exists(): args["resume_from_checkpoint"] = "latest" return args class MyApplication(npyscreen.NPSAppManaged): def __init__(self, saved_args=None): super().__init__() self.ti_arguments = None self.saved_args = saved_args def onStart(self): npyscreen.setTheme(npyscreen.Themes.DefaultTheme) self.main = self.addForm( "MAIN", textualInversionForm, name="Textual Inversion Settings", saved_args=self.saved_args, ) def copy_to_embeddings_folder(args: dict): """ Copy learned_embeds.bin into the embeddings folder, and offer to delete the full model and checkpoints. """ source = Path(args["output_dir"], "learned_embeds.bin") dest_dir_name = args["placeholder_token"].strip("<>") destination = Path(Globals.root, "embeddings", dest_dir_name) os.makedirs(destination, exist_ok=True) logger.info(f"Training completed. Copying learned_embeds.bin into {str(destination)}") shutil.copy(source, destination) if ( input("Delete training logs and intermediate checkpoints? [y] ") or "y" ).startswith(("y", "Y")): shutil.rmtree(Path(args["output_dir"])) else: logger.info(f'Keeping {args["output_dir"]}') def save_args(args: dict): """ Save the current argument values to an omegaconf file """ dest_dir = Path(Globals.root) / TRAINING_DIR os.makedirs(dest_dir, exist_ok=True) conf_file = dest_dir / CONF_FILE conf = OmegaConf.create(args) OmegaConf.save(config=conf, f=conf_file) def previous_args() -> dict: """ Get the previous arguments used. """ conf_file = Path(Globals.root) / TRAINING_DIR / CONF_FILE try: conf = OmegaConf.load(conf_file) conf["placeholder_token"] = conf["placeholder_token"].strip("<>") except: conf = None return conf def do_front_end(args: Namespace): saved_args = previous_args() myapplication = MyApplication(saved_args=saved_args) myapplication.run() if args := myapplication.ti_arguments: os.makedirs(args["output_dir"], exist_ok=True) # Automatically add angle brackets around the trigger if not re.match("^<.+>$", args["placeholder_token"]): args["placeholder_token"] = f"<{args['placeholder_token']}>" args["only_save_embeds"] = True save_args(args) try: do_textual_inversion_training(**args) copy_to_embeddings_folder(args) except Exception as e: logger.error("An exception occurred during training. The exception was:") logger.error(str(e)) logger.error("DETAILS:") logger.error(traceback.format_exc()) def main(): args = parse_args() global_set_root(args.root_dir or Globals.root) try: if args.front_end: do_front_end(args) else: do_textual_inversion_training(**vars(args)) except AssertionError as e: logger.error(e) sys.exit(-1) except KeyboardInterrupt: pass except (widget.NotEnoughSpaceForWidget, Exception) as e: if str(e).startswith("Height of 1 allocated"): logger.error( "You need to have at least one diffusers models defined in models.yaml in order to train" ) elif str(e).startswith("addwstr"): logger.error( "Not enough window space for the interface. Please make your window larger and try again." ) else: logger.error(e) sys.exit(-1) if __name__ == "__main__": main()