''' ldm.invoke.generator.img2img descends from ldm.invoke.generator ''' import torch import numpy as np from ldm.invoke.devices import choose_autocast from ldm.invoke.generator.base import Generator from ldm.models.diffusion.ddim import DDIMSampler from ldm.models.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent class Img2Img(Generator): def __init__(self, model, precision): super().__init__(model, precision) self.init_latent = None # by get_noise() def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta, conditioning,init_image,strength,step_callback=None,threshold=0.0,perlin=0.0,**kwargs): """ Returns a function returning an image derived from the prompt and the initial image Return value depends on the seed at the time you call it. """ self.perlin = perlin sampler.make_schedule( ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False ) scope = choose_autocast(self.precision) with scope(self.model.device.type): self.init_latent = self.model.get_first_stage_encoding( self.model.encode_first_stage(init_image) ) # move to latent space t_enc = int(strength * steps) uc, c, extra_conditioning_info = conditioning def make_image(x_T): # encode (scaled latent) z_enc = sampler.stochastic_encode( self.init_latent, torch.tensor([t_enc]).to(self.model.device), noise=x_T ) # decode it samples = sampler.decode( z_enc, c, t_enc, img_callback = step_callback, unconditional_guidance_scale=cfg_scale, unconditional_conditioning=uc, init_latent = self.init_latent, # changes how noising is performed in ksampler extra_conditioning_info = extra_conditioning_info ) return self.sample_to_image(samples) return make_image def get_noise(self,width,height): device = self.model.device init_latent = self.init_latent assert init_latent is not None,'call to get_noise() when init_latent not set' if device.type == 'mps': x = torch.randn_like(init_latent, device='cpu').to(device) else: x = torch.randn_like(init_latent, device=device) if self.perlin > 0.0: shape = init_latent.shape x = (1-self.perlin)*x + self.perlin*self.get_perlin_noise(shape[3], shape[2]) return x