from abc import abstractmethod from typing import Literal, get_args from PIL import Image from invokeai.app.invocations.fields import ColorField, ImageField from invokeai.app.invocations.primitives import ImageOutput from invokeai.app.services.shared.invocation_context import InvocationContext from invokeai.app.util.misc import SEED_MAX from invokeai.backend.image_util.infill_methods.cv2_inpaint import cv2_inpaint from invokeai.backend.image_util.infill_methods.lama import LaMA from invokeai.backend.image_util.infill_methods.mosaic import infill_mosaic from invokeai.backend.image_util.infill_methods.patchmatch import PatchMatch, infill_patchmatch from invokeai.backend.image_util.infill_methods.tile import infill_tile from invokeai.backend.util.logging import InvokeAILogger from .baseinvocation import BaseInvocation, invocation from .fields import InputField, WithBoard, WithMetadata from .image import PIL_RESAMPLING_MAP, PIL_RESAMPLING_MODES logger = InvokeAILogger.get_logger() def get_infill_methods(): methods = Literal["tile", "color", "lama", "cv2", "mosaic"] if PatchMatch.patchmatch_available(): methods = Literal["patchmatch", "tile", "color", "lama", "cv2", "mosaic"] return methods INFILL_METHODS = get_infill_methods() DEFAULT_INFILL_METHOD = "patchmatch" if "patchmatch" in get_args(INFILL_METHODS) else "tile" class InfillImageProcessorInvocation(BaseInvocation, WithMetadata, WithBoard): """Base class for invocations that preprocess images for Infilling""" image: ImageField = InputField(description="The image to process") @abstractmethod def infill(self, image: Image.Image) -> Image.Image: """Infill the image with the specified method""" pass def load_image(self, context: InvocationContext) -> tuple[Image.Image, bool]: """Process the image to have an alpha channel before being infilled""" image = context.images.get_pil(self.image.image_name) has_alpha = True if image.mode == "RGBA" else False return image, has_alpha def invoke(self, context: InvocationContext) -> ImageOutput: # Retrieve and process image to be infilled input_image, has_alpha = self.load_image(context) # If the input image has no alpha channel, return it if has_alpha is False: return ImageOutput.build(context.images.get_dto(self.image.image_name)) # Perform Infill action infilled_image = self.infill(input_image) # Create ImageDTO for Infilled Image infilled_image_dto = context.images.save(image=infilled_image) # Return Infilled Image return ImageOutput.build(infilled_image_dto) @invocation("infill_rgba", title="Solid Color Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.2") class InfillColorInvocation(InfillImageProcessorInvocation): """Infills transparent areas of an image with a solid color""" color: ColorField = InputField( default=ColorField(r=127, g=127, b=127, a=255), description="The color to use to infill", ) def infill(self, image: Image.Image): solid_bg = Image.new("RGBA", image.size, self.color.tuple()) infilled = Image.alpha_composite(solid_bg, image.convert("RGBA")) infilled.paste(image, (0, 0), image.split()[-1]) return infilled @invocation("infill_tile", title="Tile Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.3") class InfillTileInvocation(InfillImageProcessorInvocation): """Infills transparent areas of an image with tiles of the image""" tile_size: int = InputField(default=32, ge=1, description="The tile size (px)") seed: int = InputField( default=0, ge=0, le=SEED_MAX, description="The seed to use for tile generation (omit for random)", ) def infill(self, image: Image.Image): output = infill_tile(image, seed=self.seed, tile_size=self.tile_size) return output.infilled @invocation( "infill_patchmatch", title="PatchMatch Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.2" ) class InfillPatchMatchInvocation(InfillImageProcessorInvocation): """Infills transparent areas of an image using the PatchMatch algorithm""" downscale: float = InputField(default=2.0, gt=0, description="Run patchmatch on downscaled image to speedup infill") resample_mode: PIL_RESAMPLING_MODES = InputField(default="bicubic", description="The resampling mode") def infill(self, image: Image.Image): resample_mode = PIL_RESAMPLING_MAP[self.resample_mode] width = int(image.width / self.downscale) height = int(image.height / self.downscale) infilled = image.resize( (width, height), resample=resample_mode, ) infilled = infill_patchmatch(image) infilled = infilled.resize( (image.width, image.height), resample=resample_mode, ) infilled.paste(image, (0, 0), mask=image.split()[-1]) return infilled @invocation("infill_lama", title="LaMa Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.2") class LaMaInfillInvocation(InfillImageProcessorInvocation): """Infills transparent areas of an image using the LaMa model""" def infill(self, image: Image.Image): lama = LaMA() return lama(image) @invocation("infill_cv2", title="CV2 Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.2") class CV2InfillInvocation(InfillImageProcessorInvocation): """Infills transparent areas of an image using OpenCV Inpainting""" def infill(self, image: Image.Image): return cv2_inpaint(image) @invocation( "infill_mosaic", title="Mosaic Infill", tags=["image", "inpaint", "outpaint"], category="inpaint", version="1.0.0" ) class MosaicInfillInvocation(InfillImageProcessorInvocation): """Infills transparent areas of an image with a mosaic pattern drawing colors from the rest of the image""" image: ImageField = InputField(description="The image to infill") tile_width: int = InputField(default=64, description="Width of the tile") tile_height: int = InputField(default=64, description="Height of the tile") min_color: ColorField = InputField( default=ColorField(r=0, g=0, b=0, a=255), description="The min threshold for color", ) max_color: ColorField = InputField( default=ColorField(r=255, g=255, b=255, a=255), description="The max threshold for color", ) def infill(self, image: Image.Image): return infill_mosaic(image, (self.tile_width, self.tile_height), self.min_color.tuple(), self.max_color.tuple())