from __future__ import annotations from contextlib import contextmanager from typing import Callable, List, Union import torch.nn as nn from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel def _conv_forward_asymmetric(self, input, weight, bias): """ Patch for Conv2d._conv_forward that supports asymmetric padding """ working = nn.functional.pad(input, self.asymmetric_padding["x"], mode=self.asymmetric_padding_mode["x"]) working = nn.functional.pad(working, self.asymmetric_padding["y"], mode=self.asymmetric_padding_mode["y"]) return nn.functional.conv2d( working, weight, bias, self.stride, nn.modules.utils._pair(0), self.dilation, self.groups, ) @contextmanager def set_seamless(model: Union[UNet2DConditionModel, AutoencoderKL, AutoencoderTiny], seamless_axes: List[str]): if not seamless_axes: yield return # Callable: (input: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor to_restore: list[tuple[nn.Conv2d | nn.ConvTranspose2d, Callable]] = [] try: # Hard coded to skip down block layers, allowing for seamless tiling at the expense of prompt adherence skipped_layers = 1 for m_name, m in model.named_modules(): if not isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)): continue if isinstance(model, UNet2DConditionModel) and m_name.startswith("down_blocks.") and ".resnets." in m_name: # down_blocks.1.resnets.1.conv1 _, block_num, _, resnet_num, submodule_name = m_name.split(".") block_num = int(block_num) resnet_num = int(resnet_num) if block_num >= len(model.down_blocks) - skipped_layers: continue # Skip the second resnet (could be configurable) if resnet_num > 0: continue # Skip Conv2d layers (could be configurable) if submodule_name == "conv2": continue m.asymmetric_padding_mode = {} m.asymmetric_padding = {} m.asymmetric_padding_mode["x"] = "circular" if ("x" in seamless_axes) else "constant" m.asymmetric_padding["x"] = ( m._reversed_padding_repeated_twice[0], m._reversed_padding_repeated_twice[1], 0, 0, ) m.asymmetric_padding_mode["y"] = "circular" if ("y" in seamless_axes) else "constant" m.asymmetric_padding["y"] = ( 0, 0, m._reversed_padding_repeated_twice[2], m._reversed_padding_repeated_twice[3], ) to_restore.append((m, m._conv_forward)) m._conv_forward = _conv_forward_asymmetric.__get__(m, nn.Conv2d) yield finally: for module, orig_conv_forward in to_restore: module._conv_forward = orig_conv_forward if hasattr(module, "asymmetric_padding_mode"): del module.asymmetric_padding_mode if hasattr(module, "asymmetric_padding"): del module.asymmetric_padding