import torch import pytorch_lightning as pl import torch.nn.functional as F from contextlib import contextmanager from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer from ldm.modules.diffusionmodules.model import Encoder, Decoder from ldm.modules.distributions.distributions import ( DiagonalGaussianDistribution, ) from ldm.util import instantiate_from_config class VQModel(pl.LightningModule): def __init__( self, ddconfig, lossconfig, n_embed, embed_dim, ckpt_path=None, ignore_keys=[], image_key='image', colorize_nlabels=None, monitor=None, batch_resize_range=None, scheduler_config=None, lr_g_factor=1.0, remap=None, sane_index_shape=False, # tell vector quantizer to return indices as bhw use_ema=False, ): super().__init__() self.embed_dim = embed_dim self.n_embed = n_embed self.image_key = image_key self.encoder = Encoder(**ddconfig) self.decoder = Decoder(**ddconfig) self.loss = instantiate_from_config(lossconfig) self.quantize = VectorQuantizer( n_embed, embed_dim, beta=0.25, remap=remap, sane_index_shape=sane_index_shape, ) self.quant_conv = torch.nn.Conv2d(ddconfig['z_channels'], embed_dim, 1) self.post_quant_conv = torch.nn.Conv2d( embed_dim, ddconfig['z_channels'], 1 ) if colorize_nlabels is not None: assert type(colorize_nlabels) == int self.register_buffer( 'colorize', torch.randn(3, colorize_nlabels, 1, 1) ) if monitor is not None: self.monitor = monitor self.batch_resize_range = batch_resize_range if self.batch_resize_range is not None: print( f'{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.' ) self.use_ema = use_ema if self.use_ema: self.model_ema = LitEma(self) print(f'>> Keeping EMAs of {len(list(self.model_ema.buffers()))}.') if ckpt_path is not None: self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) self.scheduler_config = scheduler_config self.lr_g_factor = lr_g_factor @contextmanager def ema_scope(self, context=None): if self.use_ema: self.model_ema.store(self.parameters()) self.model_ema.copy_to(self) if context is not None: print(f'{context}: Switched to EMA weights') try: yield None finally: if self.use_ema: self.model_ema.restore(self.parameters()) if context is not None: print(f'{context}: Restored training weights') def init_from_ckpt(self, path, ignore_keys=list()): sd = torch.load(path, map_location='cpu')['state_dict'] keys = list(sd.keys()) for k in keys: for ik in ignore_keys: if k.startswith(ik): print('Deleting key {} from state_dict.'.format(k)) del sd[k] missing, unexpected = self.load_state_dict(sd, strict=False) print( f'Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys' ) if len(missing) > 0: print(f'Missing Keys: {missing}') print(f'Unexpected Keys: {unexpected}') def on_train_batch_end(self, *args, **kwargs): if self.use_ema: self.model_ema(self) def encode(self, x): h = self.encoder(x) h = self.quant_conv(h) quant, emb_loss, info = self.quantize(h) return quant, emb_loss, info def encode_to_prequant(self, x): h = self.encoder(x) h = self.quant_conv(h) return h def decode(self, quant): quant = self.post_quant_conv(quant) dec = self.decoder(quant) return dec def decode_code(self, code_b): quant_b = self.quantize.embed_code(code_b) dec = self.decode(quant_b) return dec def forward(self, input, return_pred_indices=False): quant, diff, (_, _, ind) = self.encode(input) dec = self.decode(quant) if return_pred_indices: return dec, diff, ind return dec, diff def get_input(self, batch, k): x = batch[k] if len(x.shape) == 3: x = x[..., None] x = ( x.permute(0, 3, 1, 2) .to(memory_format=torch.contiguous_format) .float() ) if self.batch_resize_range is not None: lower_size = self.batch_resize_range[0] upper_size = self.batch_resize_range[1] if self.global_step <= 4: # do the first few batches with max size to avoid later oom new_resize = upper_size else: new_resize = np.random.choice( np.arange(lower_size, upper_size + 16, 16) ) if new_resize != x.shape[2]: x = F.interpolate(x, size=new_resize, mode='bicubic') x = x.detach() return x def training_step(self, batch, batch_idx, optimizer_idx): # https://github.com/pytorch/pytorch/issues/37142 # try not to fool the heuristics x = self.get_input(batch, self.image_key) xrec, qloss, ind = self(x, return_pred_indices=True) if optimizer_idx == 0: # autoencode aeloss, log_dict_ae = self.loss( qloss, x, xrec, optimizer_idx, self.global_step, last_layer=self.get_last_layer(), split='train', predicted_indices=ind, ) self.log_dict( log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True, ) return aeloss if optimizer_idx == 1: # discriminator discloss, log_dict_disc = self.loss( qloss, x, xrec, optimizer_idx, self.global_step, last_layer=self.get_last_layer(), split='train', ) self.log_dict( log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True, ) return discloss def validation_step(self, batch, batch_idx): log_dict = self._validation_step(batch, batch_idx) with self.ema_scope(): log_dict_ema = self._validation_step( batch, batch_idx, suffix='_ema' ) return log_dict def _validation_step(self, batch, batch_idx, suffix=''): x = self.get_input(batch, self.image_key) xrec, qloss, ind = self(x, return_pred_indices=True) aeloss, log_dict_ae = self.loss( qloss, x, xrec, 0, self.global_step, last_layer=self.get_last_layer(), split='val' + suffix, predicted_indices=ind, ) discloss, log_dict_disc = self.loss( qloss, x, xrec, 1, self.global_step, last_layer=self.get_last_layer(), split='val' + suffix, predicted_indices=ind, ) rec_loss = log_dict_ae[f'val{suffix}/rec_loss'] self.log( f'val{suffix}/rec_loss', rec_loss, prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True, ) self.log( f'val{suffix}/aeloss', aeloss, prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True, ) if version.parse(pl.__version__) >= version.parse('1.4.0'): del log_dict_ae[f'val{suffix}/rec_loss'] self.log_dict(log_dict_ae) self.log_dict(log_dict_disc) return self.log_dict def configure_optimizers(self): lr_d = self.learning_rate lr_g = self.lr_g_factor * self.learning_rate print('lr_d', lr_d) print('lr_g', lr_g) opt_ae = torch.optim.Adam( list(self.encoder.parameters()) + list(self.decoder.parameters()) + list(self.quantize.parameters()) + list(self.quant_conv.parameters()) + list(self.post_quant_conv.parameters()), lr=lr_g, betas=(0.5, 0.9), ) opt_disc = torch.optim.Adam( self.loss.discriminator.parameters(), lr=lr_d, betas=(0.5, 0.9) ) if self.scheduler_config is not None: scheduler = instantiate_from_config(self.scheduler_config) print('Setting up LambdaLR scheduler...') scheduler = [ { 'scheduler': LambdaLR( opt_ae, lr_lambda=scheduler.schedule ), 'interval': 'step', 'frequency': 1, }, { 'scheduler': LambdaLR( opt_disc, lr_lambda=scheduler.schedule ), 'interval': 'step', 'frequency': 1, }, ] return [opt_ae, opt_disc], scheduler return [opt_ae, opt_disc], [] def get_last_layer(self): return self.decoder.conv_out.weight def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs): log = dict() x = self.get_input(batch, self.image_key) x = x.to(self.device) if only_inputs: log['inputs'] = x return log xrec, _ = self(x) if x.shape[1] > 3: # colorize with random projection assert xrec.shape[1] > 3 x = self.to_rgb(x) xrec = self.to_rgb(xrec) log['inputs'] = x log['reconstructions'] = xrec if plot_ema: with self.ema_scope(): xrec_ema, _ = self(x) if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema) log['reconstructions_ema'] = xrec_ema return log def to_rgb(self, x): assert self.image_key == 'segmentation' if not hasattr(self, 'colorize'): self.register_buffer( 'colorize', torch.randn(3, x.shape[1], 1, 1).to(x) ) x = F.conv2d(x, weight=self.colorize) x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0 return x class VQModelInterface(VQModel): def __init__(self, embed_dim, *args, **kwargs): super().__init__(embed_dim=embed_dim, *args, **kwargs) self.embed_dim = embed_dim def encode(self, x): h = self.encoder(x) h = self.quant_conv(h) return h def decode(self, h, force_not_quantize=False): # also go through quantization layer if not force_not_quantize: quant, emb_loss, info = self.quantize(h) else: quant = h quant = self.post_quant_conv(quant) dec = self.decoder(quant) return dec class AutoencoderKL(pl.LightningModule): def __init__( self, ddconfig, lossconfig, embed_dim, ckpt_path=None, ignore_keys=[], image_key='image', colorize_nlabels=None, monitor=None, ): super().__init__() self.image_key = image_key self.encoder = Encoder(**ddconfig) self.decoder = Decoder(**ddconfig) self.loss = instantiate_from_config(lossconfig) assert ddconfig['double_z'] self.quant_conv = torch.nn.Conv2d( 2 * ddconfig['z_channels'], 2 * embed_dim, 1 ) self.post_quant_conv = torch.nn.Conv2d( embed_dim, ddconfig['z_channels'], 1 ) self.embed_dim = embed_dim if colorize_nlabels is not None: assert type(colorize_nlabels) == int self.register_buffer( 'colorize', torch.randn(3, colorize_nlabels, 1, 1) ) if monitor is not None: self.monitor = monitor if ckpt_path is not None: self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) def init_from_ckpt(self, path, ignore_keys=list()): sd = torch.load(path, map_location='cpu')['state_dict'] keys = list(sd.keys()) for k in keys: for ik in ignore_keys: if k.startswith(ik): print('Deleting key {} from state_dict.'.format(k)) del sd[k] self.load_state_dict(sd, strict=False) print(f'Restored from {path}') def encode(self, x): h = self.encoder(x) moments = self.quant_conv(h) posterior = DiagonalGaussianDistribution(moments) return posterior def decode(self, z): z = self.post_quant_conv(z) dec = self.decoder(z) return dec def forward(self, input, sample_posterior=True): posterior = self.encode(input) if sample_posterior: z = posterior.sample() else: z = posterior.mode() dec = self.decode(z) return dec, posterior def get_input(self, batch, k): x = batch[k] if len(x.shape) == 3: x = x[..., None] x = ( x.permute(0, 3, 1, 2) .to(memory_format=torch.contiguous_format) .float() ) return x def training_step(self, batch, batch_idx, optimizer_idx): inputs = self.get_input(batch, self.image_key) reconstructions, posterior = self(inputs) if optimizer_idx == 0: # train encoder+decoder+logvar aeloss, log_dict_ae = self.loss( inputs, reconstructions, posterior, optimizer_idx, self.global_step, last_layer=self.get_last_layer(), split='train', ) self.log( 'aeloss', aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True, ) self.log_dict( log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False, ) return aeloss if optimizer_idx == 1: # train the discriminator discloss, log_dict_disc = self.loss( inputs, reconstructions, posterior, optimizer_idx, self.global_step, last_layer=self.get_last_layer(), split='train', ) self.log( 'discloss', discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True, ) self.log_dict( log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False, ) return discloss def validation_step(self, batch, batch_idx): inputs = self.get_input(batch, self.image_key) reconstructions, posterior = self(inputs) aeloss, log_dict_ae = self.loss( inputs, reconstructions, posterior, 0, self.global_step, last_layer=self.get_last_layer(), split='val', ) discloss, log_dict_disc = self.loss( inputs, reconstructions, posterior, 1, self.global_step, last_layer=self.get_last_layer(), split='val', ) self.log('val/rec_loss', log_dict_ae['val/rec_loss']) self.log_dict(log_dict_ae) self.log_dict(log_dict_disc) return self.log_dict def configure_optimizers(self): lr = self.learning_rate opt_ae = torch.optim.Adam( list(self.encoder.parameters()) + list(self.decoder.parameters()) + list(self.quant_conv.parameters()) + list(self.post_quant_conv.parameters()), lr=lr, betas=(0.5, 0.9), ) opt_disc = torch.optim.Adam( self.loss.discriminator.parameters(), lr=lr, betas=(0.5, 0.9) ) return [opt_ae, opt_disc], [] def get_last_layer(self): return self.decoder.conv_out.weight @torch.no_grad() def log_images(self, batch, only_inputs=False, **kwargs): log = dict() x = self.get_input(batch, self.image_key) x = x.to(self.device) if not only_inputs: xrec, posterior = self(x) if x.shape[1] > 3: # colorize with random projection assert xrec.shape[1] > 3 x = self.to_rgb(x) xrec = self.to_rgb(xrec) log['samples'] = self.decode(torch.randn_like(posterior.sample())) log['reconstructions'] = xrec log['inputs'] = x return log def to_rgb(self, x): assert self.image_key == 'segmentation' if not hasattr(self, 'colorize'): self.register_buffer( 'colorize', torch.randn(3, x.shape[1], 1, 1).to(x) ) x = F.conv2d(x, weight=self.colorize) x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0 return x class IdentityFirstStage(torch.nn.Module): def __init__(self, *args, vq_interface=False, **kwargs): self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff super().__init__() def encode(self, x, *args, **kwargs): return x def decode(self, x, *args, **kwargs): return x def quantize(self, x, *args, **kwargs): if self.vq_interface: return x, None, [None, None, None] return x def forward(self, x, *args, **kwargs): return x