import base64 import glob import io import json import math import mimetypes import os import shutil import traceback from pathlib import Path from threading import Event from uuid import uuid4 import eventlet from compel.prompt_parser import Blend from flask import Flask, make_response, redirect, request, send_from_directory from flask_socketio import SocketIO from PIL import Image from PIL.Image import Image as ImageType from werkzeug.utils import secure_filename import invokeai.backend.util.logging as logger import invokeai.frontend.web.dist as frontend from .. import Generate from ..args import APP_ID, APP_VERSION, Args, calculate_init_img_hash from ..generator import infill_methods from ..globals import Globals, global_converted_ckpts_dir, global_models_dir from ..image_util import PngWriter, retrieve_metadata from ...frontend.merge.merge_diffusers import merge_diffusion_models from ..prompting import ( get_prompt_structure, get_tokens_for_prompt_object, ) from ..stable_diffusion import PipelineIntermediateState from .modules.get_canvas_generation_mode import get_canvas_generation_mode from .modules.parameters import parameters_to_command # Loading Arguments opt = Args() args = opt.parse_args() # Set the root directory for static files and relative paths args.root_dir = os.path.expanduser(args.root_dir or "..") if not os.path.isabs(args.outdir): args.outdir = os.path.join(args.root_dir, args.outdir) # normalize the config directory relative to root if not os.path.isabs(opt.conf): opt.conf = os.path.normpath(os.path.join(Globals.root, opt.conf)) class InvokeAIWebServer: def __init__(self, generate: Generate, gfpgan, codeformer, esrgan) -> None: self.host = args.host self.port = args.port self.generate = generate self.gfpgan = gfpgan self.codeformer = codeformer self.esrgan = esrgan self.canceled = Event() self.ALLOWED_EXTENSIONS = {"png", "jpg", "jpeg"} def allowed_file(self, filename: str) -> bool: return "." in filename and filename.rsplit(".", 1)[1].lower() in self.ALLOWED_EXTENSIONS def run(self): self.setup_app() self.setup_flask() def setup_flask(self): # Fix missing mimetypes on Windows mimetypes.add_type("application/javascript", ".js") mimetypes.add_type("text/css", ".css") # Socket IO engineio_logger = True if args.web_verbose else False max_http_buffer_size = 10000000 socketio_args = { "logger": logger, "engineio_logger": engineio_logger, "max_http_buffer_size": max_http_buffer_size, "ping_interval": (50, 50), "ping_timeout": 60, } if opt.cors: _cors = opt.cors # convert list back into comma-separated string, # be defensive here, not sure in what form this arrives if isinstance(_cors, list): _cors = ",".join(_cors) if "," in _cors: _cors = _cors.split(",") socketio_args["cors_allowed_origins"] = _cors self.app = Flask(__name__, static_url_path="", static_folder=frontend.__path__[0]) self.socketio = SocketIO(self.app, **socketio_args) # Keep Server Alive Route @self.app.route("/flaskwebgui-keep-server-alive") def keep_alive(): return {"message": "Server Running"} # Outputs Route self.app.config["OUTPUTS_FOLDER"] = os.path.abspath(args.outdir) @self.app.route("/outputs/") def outputs(file_path): return send_from_directory(self.app.config["OUTPUTS_FOLDER"], file_path) # Base Route @self.app.route("/") def serve(): if args.web_develop: return redirect("http://127.0.0.1:5173") else: return send_from_directory(self.app.static_folder, "index.html") @self.app.route("/upload", methods=["POST"]) def upload(): try: data = json.loads(request.form["data"]) filename = "" # check if the post request has the file part if "file" in request.files: file = request.files["file"] # If the user does not select a file, the browser submits an # empty file without a filename. if file.filename == "": return make_response("No file selected", 400) filename = file.filename elif "dataURL" in data: file = dataURL_to_bytes(data["dataURL"]) if "filename" not in data or data["filename"] == "": return make_response("No filename provided", 400) filename = data["filename"] else: return make_response("No file or dataURL", 400) kind = data["kind"] if kind == "init": path = self.init_image_path elif kind == "temp": path = self.temp_image_path elif kind == "result": path = self.result_path elif kind == "mask": path = self.mask_image_path else: return make_response(f"Invalid upload kind: {kind}", 400) if not self.allowed_file(filename): return make_response( f'Invalid file type, must be one of: {", ".join(self.ALLOWED_EXTENSIONS)}', 400, ) secured_filename = secure_filename(filename) uuid = uuid4().hex truncated_uuid = uuid[:8] split = os.path.splitext(secured_filename) name = f"{split[0]}.{truncated_uuid}{split[1]}" file_path = os.path.join(path, name) if "dataURL" in data: with open(file_path, "wb") as f: f.write(file) else: file.save(file_path) mtime = os.path.getmtime(file_path) pil_image = Image.open(file_path) if "cropVisible" in data and data["cropVisible"] == True: visible_image_bbox = pil_image.getbbox() pil_image = pil_image.crop(visible_image_bbox) pil_image.save(file_path) (width, height) = pil_image.size thumbnail_path = save_thumbnail(pil_image, os.path.basename(file_path), self.thumbnail_image_path) response = { "url": self.get_url_from_image_path(file_path), "thumbnail": self.get_url_from_image_path(thumbnail_path), "mtime": mtime, "width": width, "height": height, } return make_response(response, 200) except Exception as e: self.handle_exceptions(e) return make_response("Error uploading file", 500) self.load_socketio_listeners(self.socketio) if args.gui: logger.info("Launching Invoke AI GUI") try: from flaskwebgui import FlaskUI FlaskUI( app=self.app, socketio=self.socketio, server="flask_socketio", width=1600, height=1000, port=self.port, ).run() except KeyboardInterrupt: import sys sys.exit(0) else: useSSL = args.certfile or args.keyfile logger.info("Started Invoke AI Web Server") if self.host == "0.0.0.0": logger.info( f"Point your browser at http{'s' if useSSL else ''}://localhost:{self.port} or use the host's DNS name or IP address." ) else: logger.info("Default host address now 127.0.0.1 (localhost). Use --host 0.0.0.0 to bind any address.") logger.info(f"Point your browser at http{'s' if useSSL else ''}://{self.host}:{self.port}") if not useSSL: self.socketio.run(app=self.app, host=self.host, port=self.port) else: self.socketio.run( app=self.app, host=self.host, port=self.port, certfile=args.certfile, keyfile=args.keyfile, ) def setup_app(self): self.result_url = "outputs/" self.init_image_url = "outputs/init-images/" self.mask_image_url = "outputs/mask-images/" self.intermediate_url = "outputs/intermediates/" self.temp_image_url = "outputs/temp-images/" self.thumbnail_image_url = "outputs/thumbnails/" # location for "finished" images self.result_path = args.outdir # temporary path for intermediates self.intermediate_path = os.path.join(self.result_path, "intermediates/") # path for user-uploaded init images and masks self.init_image_path = os.path.join(self.result_path, "init-images/") self.mask_image_path = os.path.join(self.result_path, "mask-images/") # path for temp images e.g. gallery generations which are not committed self.temp_image_path = os.path.join(self.result_path, "temp-images/") # path for thumbnail images self.thumbnail_image_path = os.path.join(self.result_path, "thumbnails/") # txt log self.log_path = os.path.join(self.result_path, "invoke_logger.txt") # make all output paths [ os.makedirs(path, exist_ok=True) for path in [ self.result_path, self.intermediate_path, self.init_image_path, self.mask_image_path, self.temp_image_path, self.thumbnail_image_path, ] ] def load_socketio_listeners(self, socketio): @socketio.on("requestSystemConfig") def handle_request_capabilities(): logger.info("System config requested") config = self.get_system_config() config["model_list"] = self.generate.model_manager.list_models() config["infill_methods"] = infill_methods() socketio.emit("systemConfig", config) @socketio.on("searchForModels") def handle_search_models(search_folder: str): try: if not search_folder: socketio.emit( "foundModels", {"search_folder": None, "found_models": None}, ) else: ( search_folder, found_models, ) = self.generate.model_manager.search_models(search_folder) socketio.emit( "foundModels", {"search_folder": search_folder, "found_models": found_models}, ) except Exception as e: self.handle_exceptions(e) print("\n") @socketio.on("addNewModel") def handle_add_model(new_model_config: dict): try: model_name = new_model_config["name"] del new_model_config["name"] model_attributes = new_model_config if len(model_attributes["vae"]) == 0: del model_attributes["vae"] update = False current_model_list = self.generate.model_manager.list_models() if model_name in current_model_list: update = True logger.info(f"Adding New Model: {model_name}") self.generate.model_manager.add_model( model_name=model_name, model_attributes=model_attributes, clobber=True, ) self.generate.model_manager.commit(opt.conf) new_model_list = self.generate.model_manager.list_models() socketio.emit( "newModelAdded", { "new_model_name": model_name, "model_list": new_model_list, "update": update, }, ) logger.info(f"New Model Added: {model_name}") except Exception as e: self.handle_exceptions(e) @socketio.on("deleteModel") def handle_delete_model(model_name: str): try: logger.info(f"Deleting Model: {model_name}") self.generate.model_manager.del_model(model_name) self.generate.model_manager.commit(opt.conf) updated_model_list = self.generate.model_manager.list_models() socketio.emit( "modelDeleted", { "deleted_model_name": model_name, "model_list": updated_model_list, }, ) logger.info(f"Model Deleted: {model_name}") except Exception as e: self.handle_exceptions(e) @socketio.on("requestModelChange") def handle_set_model(model_name: str): try: logger.info(f"Model change requested: {model_name}") model = self.generate.set_model(model_name) model_list = self.generate.model_manager.list_models() if model is None: socketio.emit( "modelChangeFailed", {"model_name": model_name, "model_list": model_list}, ) else: socketio.emit( "modelChanged", {"model_name": model_name, "model_list": model_list}, ) except Exception as e: self.handle_exceptions(e) @socketio.on("convertToDiffusers") def convert_to_diffusers(model_to_convert: dict): try: if model_info := self.generate.model_manager.model_info(model_name=model_to_convert["model_name"]): if "weights" in model_info: ckpt_path = Path(model_info["weights"]) original_config_file = Path(model_info["config"]) model_name = model_to_convert["model_name"] model_description = model_info["description"] else: self.socketio.emit("error", {"message": "Model is not a valid checkpoint file"}) else: self.socketio.emit("error", {"message": "Could not retrieve model info."}) if not ckpt_path.is_absolute(): ckpt_path = Path(Globals.root, ckpt_path) if original_config_file and not original_config_file.is_absolute(): original_config_file = Path(Globals.root, original_config_file) diffusers_path = Path(ckpt_path.parent.absolute(), f"{model_name}_diffusers") if model_to_convert["save_location"] == "root": diffusers_path = Path(global_converted_ckpts_dir(), f"{model_name}_diffusers") if model_to_convert["save_location"] == "custom" and model_to_convert["custom_location"] is not None: diffusers_path = Path(model_to_convert["custom_location"], f"{model_name}_diffusers") if diffusers_path.exists(): shutil.rmtree(diffusers_path) self.generate.model_manager.convert_and_import( ckpt_path, diffusers_path, model_name=model_name, model_description=model_description, vae=None, original_config_file=original_config_file, commit_to_conf=opt.conf, ) new_model_list = self.generate.model_manager.list_models() socketio.emit( "modelConverted", { "new_model_name": model_name, "model_list": new_model_list, "update": True, }, ) logger.info(f"Model Converted: {model_name}") except Exception as e: self.handle_exceptions(e) @socketio.on("mergeDiffusersModels") def merge_diffusers_models(model_merge_info: dict): try: models_to_merge = model_merge_info["models_to_merge"] model_ids_or_paths = [self.generate.model_manager.model_name_or_path(x) for x in models_to_merge] merged_pipe = merge_diffusion_models( model_ids_or_paths, model_merge_info["alpha"], model_merge_info["interp"], model_merge_info["force"], ) dump_path = global_models_dir() / "merged_models" if model_merge_info["model_merge_save_path"] is not None: dump_path = Path(model_merge_info["model_merge_save_path"]) os.makedirs(dump_path, exist_ok=True) dump_path = dump_path / model_merge_info["merged_model_name"] merged_pipe.save_pretrained(dump_path, safe_serialization=1) merged_model_config = dict( model_name=model_merge_info["merged_model_name"], description=f'Merge of models {", ".join(models_to_merge)}', commit_to_conf=opt.conf, ) if vae := self.generate.model_manager.config[models_to_merge[0]].get("vae", None): logger.info(f"Using configured VAE assigned to {models_to_merge[0]}") merged_model_config.update(vae=vae) self.generate.model_manager.import_diffuser_model(dump_path, **merged_model_config) new_model_list = self.generate.model_manager.list_models() socketio.emit( "modelsMerged", { "merged_models": models_to_merge, "merged_model_name": model_merge_info["merged_model_name"], "model_list": new_model_list, "update": True, }, ) logger.info(f"Models Merged: {models_to_merge}") logger.info(f"New Model Added: {model_merge_info['merged_model_name']}") except Exception as e: self.handle_exceptions(e) @socketio.on("requestEmptyTempFolder") def empty_temp_folder(): try: temp_files = glob.glob(os.path.join(self.temp_image_path, "*")) for f in temp_files: try: os.remove(f) thumbnail_path = os.path.join( self.thumbnail_image_path, os.path.splitext(os.path.basename(f))[0] + ".webp", ) os.remove(thumbnail_path) except Exception as e: socketio.emit("error", {"message": f"Unable to delete {f}: {str(e)}"}) pass socketio.emit("tempFolderEmptied") except Exception as e: self.handle_exceptions(e) @socketio.on("requestSaveStagingAreaImageToGallery") def save_temp_image_to_gallery(url): try: image_path = self.get_image_path_from_url(url) new_path = os.path.join(self.result_path, os.path.basename(image_path)) shutil.copy2(image_path, new_path) if os.path.splitext(new_path)[1] == ".png": metadata = retrieve_metadata(new_path) else: metadata = {} pil_image = Image.open(new_path) (width, height) = pil_image.size thumbnail_path = save_thumbnail(pil_image, os.path.basename(new_path), self.thumbnail_image_path) image_array = [ { "url": self.get_url_from_image_path(new_path), "thumbnail": self.get_url_from_image_path(thumbnail_path), "mtime": os.path.getmtime(new_path), "metadata": metadata, "width": width, "height": height, "category": "result", } ] socketio.emit( "galleryImages", {"images": image_array, "category": "result"}, ) except Exception as e: self.handle_exceptions(e) @socketio.on("requestLatestImages") def handle_request_latest_images(category, latest_mtime): try: base_path = self.result_path if category == "result" else self.init_image_path paths = [] for ext in ("*.png", "*.jpg", "*.jpeg"): paths.extend(glob.glob(os.path.join(base_path, ext))) image_paths = sorted(paths, key=lambda x: os.path.getmtime(x), reverse=True) image_paths = list( filter( lambda x: os.path.getmtime(x) > latest_mtime, image_paths, ) ) image_array = [] for path in image_paths: try: if os.path.splitext(path)[1] == ".png": metadata = retrieve_metadata(path) else: metadata = {} pil_image = Image.open(path) (width, height) = pil_image.size thumbnail_path = save_thumbnail(pil_image, os.path.basename(path), self.thumbnail_image_path) image_array.append( { "url": self.get_url_from_image_path(path), "thumbnail": self.get_url_from_image_path(thumbnail_path), "mtime": os.path.getmtime(path), "metadata": metadata.get("sd-metadata"), "dreamPrompt": metadata.get("Dream"), "width": width, "height": height, "category": category, } ) except Exception as e: socketio.emit("error", {"message": f"Unable to load {path}: {str(e)}"}) pass socketio.emit( "galleryImages", {"images": image_array, "category": category}, ) except Exception as e: self.handle_exceptions(e) @socketio.on("requestImages") def handle_request_images(category, earliest_mtime=None): try: page_size = 50 base_path = self.result_path if category == "result" else self.init_image_path paths = [] for ext in ("*.png", "*.jpg", "*.jpeg"): paths.extend(glob.glob(os.path.join(base_path, ext))) image_paths = sorted(paths, key=lambda x: os.path.getmtime(x), reverse=True) if earliest_mtime: image_paths = list( filter( lambda x: os.path.getmtime(x) < earliest_mtime, image_paths, ) ) areMoreImagesAvailable = len(image_paths) >= page_size image_paths = image_paths[slice(0, page_size)] image_array = [] for path in image_paths: try: if os.path.splitext(path)[1] == ".png": metadata = retrieve_metadata(path) else: metadata = {} pil_image = Image.open(path) (width, height) = pil_image.size thumbnail_path = save_thumbnail(pil_image, os.path.basename(path), self.thumbnail_image_path) image_array.append( { "url": self.get_url_from_image_path(path), "thumbnail": self.get_url_from_image_path(thumbnail_path), "mtime": os.path.getmtime(path), "metadata": metadata.get("sd-metadata"), "dreamPrompt": metadata.get("Dream"), "width": width, "height": height, "category": category, } ) except Exception as e: logger.info(f"Unable to load {path}") socketio.emit("error", {"message": f"Unable to load {path}: {str(e)}"}) pass socketio.emit( "galleryImages", { "images": image_array, "areMoreImagesAvailable": areMoreImagesAvailable, "category": category, }, ) except Exception as e: self.handle_exceptions(e) @socketio.on("generateImage") def handle_generate_image_event(generation_parameters, esrgan_parameters, facetool_parameters): try: # truncate long init_mask/init_img base64 if needed printable_parameters = { **generation_parameters, } if "init_img" in generation_parameters: printable_parameters["init_img"] = printable_parameters["init_img"][:64] + "..." if "init_mask" in generation_parameters: printable_parameters["init_mask"] = printable_parameters["init_mask"][:64] + "..." logger.info(f"Image Generation Parameters:\n\n{printable_parameters}\n") logger.info(f"ESRGAN Parameters: {esrgan_parameters}") logger.info(f"Facetool Parameters: {facetool_parameters}") self.generate_images( generation_parameters, esrgan_parameters, facetool_parameters, ) except Exception as e: self.handle_exceptions(e) @socketio.on("runPostprocessing") def handle_run_postprocessing(original_image, postprocessing_parameters): try: logger.info(f'Postprocessing requested for "{original_image["url"]}": {postprocessing_parameters}') progress = Progress() socketio.emit("progressUpdate", progress.to_formatted_dict()) eventlet.sleep(0) original_image_path = self.get_image_path_from_url(original_image["url"]) image = Image.open(original_image_path) try: seed = original_image["metadata"]["image"]["seed"] except KeyError: seed = "unknown_seed" pass if postprocessing_parameters["type"] == "esrgan": progress.set_current_status("common.statusUpscalingESRGAN") elif postprocessing_parameters["type"] == "gfpgan": progress.set_current_status("common.statusRestoringFacesGFPGAN") elif postprocessing_parameters["type"] == "codeformer": progress.set_current_status("common.statusRestoringFacesCodeFormer") socketio.emit("progressUpdate", progress.to_formatted_dict()) eventlet.sleep(0) if postprocessing_parameters["type"] == "esrgan": image = self.esrgan.process( image=image, upsampler_scale=postprocessing_parameters["upscale"][0], denoise_str=postprocessing_parameters["upscale"][1], strength=postprocessing_parameters["upscale"][2], seed=seed, ) elif postprocessing_parameters["type"] == "gfpgan": image = self.gfpgan.process( image=image, strength=postprocessing_parameters["facetool_strength"], seed=seed, ) elif postprocessing_parameters["type"] == "codeformer": image = self.codeformer.process( image=image, strength=postprocessing_parameters["facetool_strength"], fidelity=postprocessing_parameters["codeformer_fidelity"], seed=seed, device="cpu" if str(self.generate.device) == "mps" else self.generate.device, ) else: raise TypeError(f'{postprocessing_parameters["type"]} is not a valid postprocessing type') progress.set_current_status("common.statusSavingImage") socketio.emit("progressUpdate", progress.to_formatted_dict()) eventlet.sleep(0) postprocessing_parameters["seed"] = seed metadata = self.parameters_to_post_processed_image_metadata( parameters=postprocessing_parameters, original_image_path=original_image_path, ) command = parameters_to_command(postprocessing_parameters) (width, height) = image.size path = self.save_result_image( image, command, metadata, self.result_path, postprocessing=postprocessing_parameters["type"], ) thumbnail_path = save_thumbnail(image, os.path.basename(path), self.thumbnail_image_path) self.write_log_message( f'[Postprocessed] "{original_image_path}" > "{path}": {postprocessing_parameters}' ) progress.mark_complete() socketio.emit("progressUpdate", progress.to_formatted_dict()) eventlet.sleep(0) socketio.emit( "postprocessingResult", { "url": self.get_url_from_image_path(path), "thumbnail": self.get_url_from_image_path(thumbnail_path), "mtime": os.path.getmtime(path), "metadata": metadata, "dreamPrompt": command, "width": width, "height": height, }, ) except Exception as e: self.handle_exceptions(e) @socketio.on("cancel") def handle_cancel(): logger.info("Cancel processing requested") self.canceled.set() # TODO: I think this needs a safety mechanism. @socketio.on("deleteImage") def handle_delete_image(url, thumbnail, uuid, category): try: logger.info(f'Delete requested "{url}"') from send2trash import send2trash path = self.get_image_path_from_url(url) thumbnail_path = self.get_image_path_from_url(thumbnail) send2trash(path) send2trash(thumbnail_path) socketio.emit( "imageDeleted", {"url": url, "uuid": uuid, "category": category}, ) except Exception as e: self.handle_exceptions(e) # App Functions def get_system_config(self): model_list: dict = self.generate.model_manager.list_models() active_model_name = None for model_name, model_dict in model_list.items(): if model_dict["status"] == "active": active_model_name = model_name return { "model": "stable diffusion", "model_weights": active_model_name, "model_hash": self.generate.model_hash, "app_id": APP_ID, "app_version": APP_VERSION, } def generate_images(self, generation_parameters, esrgan_parameters, facetool_parameters): try: self.canceled.clear() step_index = 1 prior_variations = ( generation_parameters["with_variations"] if "with_variations" in generation_parameters else [] ) actual_generation_mode = generation_parameters["generation_mode"] original_bounding_box = None progress = Progress(generation_parameters=generation_parameters) self.socketio.emit("progressUpdate", progress.to_formatted_dict()) eventlet.sleep(0) """ TODO: If a result image is used as an init image, and then deleted, we will want to be able to use it as an init image in the future. Need to handle this case. """ """ Prepare for generation based on generation_mode """ if generation_parameters["generation_mode"] == "unifiedCanvas": """ generation_parameters["init_img"] is a base64 image generation_parameters["init_mask"] is a base64 image So we need to convert each into a PIL Image. """ init_img_url = generation_parameters["init_img"] original_bounding_box = generation_parameters["bounding_box"].copy() initial_image = dataURL_to_image(generation_parameters["init_img"]).convert("RGBA") """ The outpaint image and mask are pre-cropped by the UI, so the bounding box we pass to the generator should be: { "x": 0, "y": 0, "width": original_bounding_box["width"], "height": original_bounding_box["height"] } """ generation_parameters["bounding_box"]["x"] = 0 generation_parameters["bounding_box"]["y"] = 0 # Convert mask dataURL to an image and convert to greyscale mask_image = dataURL_to_image(generation_parameters["init_mask"]).convert("L") actual_generation_mode = get_canvas_generation_mode(initial_image, mask_image) """ Apply the mask to the init image, creating a "mask" image with transparency where inpainting should occur. This is the kind of mask that prompt2image() needs. """ alpha_mask = initial_image.copy() alpha_mask.putalpha(mask_image) generation_parameters["init_img"] = initial_image generation_parameters["init_mask"] = alpha_mask # Remove the unneeded parameters for whichever mode we are doing if actual_generation_mode == "inpainting": generation_parameters.pop("seam_size", None) generation_parameters.pop("seam_blur", None) generation_parameters.pop("seam_strength", None) generation_parameters.pop("seam_steps", None) generation_parameters.pop("tile_size", None) generation_parameters.pop("force_outpaint", None) elif actual_generation_mode == "img2img": generation_parameters["height"] = original_bounding_box["height"] generation_parameters["width"] = original_bounding_box["width"] generation_parameters.pop("init_mask", None) generation_parameters.pop("seam_size", None) generation_parameters.pop("seam_blur", None) generation_parameters.pop("seam_strength", None) generation_parameters.pop("seam_steps", None) generation_parameters.pop("tile_size", None) generation_parameters.pop("force_outpaint", None) generation_parameters.pop("infill_method", None) elif actual_generation_mode == "txt2img": generation_parameters["height"] = original_bounding_box["height"] generation_parameters["width"] = original_bounding_box["width"] generation_parameters.pop("strength", None) generation_parameters.pop("fit", None) generation_parameters.pop("init_img", None) generation_parameters.pop("init_mask", None) generation_parameters.pop("seam_size", None) generation_parameters.pop("seam_blur", None) generation_parameters.pop("seam_strength", None) generation_parameters.pop("seam_steps", None) generation_parameters.pop("tile_size", None) generation_parameters.pop("force_outpaint", None) generation_parameters.pop("infill_method", None) elif generation_parameters["generation_mode"] == "img2img": init_img_url = generation_parameters["init_img"] init_img_path = self.get_image_path_from_url(init_img_url) generation_parameters["init_img"] = Image.open(init_img_path).convert("RGB") def image_progress(intermediate_state: PipelineIntermediateState): if self.canceled.is_set(): raise CanceledException nonlocal step_index nonlocal generation_parameters nonlocal progress step = intermediate_state.step if intermediate_state.predicted_original is not None: # Some schedulers report not only the noisy latents at the current timestep, # but also their estimate so far of what the de-noised latents will be. sample = intermediate_state.predicted_original else: sample = intermediate_state.latents generation_messages = { "txt2img": "common.statusGeneratingTextToImage", "img2img": "common.statusGeneratingImageToImage", "inpainting": "common.statusGeneratingInpainting", "outpainting": "common.statusGeneratingOutpainting", } progress.set_current_step(step + 1) progress.set_current_status(f"{generation_messages[actual_generation_mode]}") progress.set_current_status_has_steps(True) if ( generation_parameters["progress_images"] and step % generation_parameters["save_intermediates"] == 0 and step < generation_parameters["steps"] - 1 ): image = self.generate.sample_to_image(sample) metadata = self.parameters_to_generated_image_metadata(generation_parameters) command = parameters_to_command(generation_parameters) (width, height) = image.size path = self.save_result_image( image, command, metadata, self.intermediate_path, step_index=step_index, postprocessing=False, ) step_index += 1 self.socketio.emit( "intermediateResult", { "url": self.get_url_from_image_path(path), "mtime": os.path.getmtime(path), "metadata": metadata, "width": width, "height": height, "generationMode": generation_parameters["generation_mode"], "boundingBox": original_bounding_box, }, ) if generation_parameters["progress_latents"]: image = self.generate.sample_to_lowres_estimated_image(sample) (width, height) = image.size width *= 8 height *= 8 img_base64 = image_to_dataURL(image, image_format="JPEG") self.socketio.emit( "intermediateResult", { "url": img_base64, "isBase64": True, "mtime": 0, "metadata": {}, "width": width, "height": height, "generationMode": generation_parameters["generation_mode"], "boundingBox": original_bounding_box, }, ) self.socketio.emit("progressUpdate", progress.to_formatted_dict()) eventlet.sleep(0) def image_done(image, seed, first_seed, attention_maps_image=None): if self.canceled.is_set(): raise CanceledException nonlocal generation_parameters nonlocal esrgan_parameters nonlocal facetool_parameters nonlocal progress nonlocal prior_variations """ Tidy up after generation based on generation_mode """ # paste the inpainting image back onto the original if generation_parameters["generation_mode"] == "inpainting": image = paste_image_into_bounding_box( Image.open(init_img_path), image, **generation_parameters["bounding_box"], ) progress.set_current_status("common.statusGenerationComplete") self.socketio.emit("progressUpdate", progress.to_formatted_dict()) eventlet.sleep(0) all_parameters = generation_parameters postprocessing = False if "variation_amount" in all_parameters and all_parameters["variation_amount"] > 0: first_seed = first_seed or seed this_variation = [[seed, all_parameters["variation_amount"]]] all_parameters["with_variations"] = prior_variations + this_variation all_parameters["seed"] = first_seed elif "with_variations" in all_parameters: all_parameters["seed"] = first_seed else: all_parameters["seed"] = seed if self.canceled.is_set(): raise CanceledException if esrgan_parameters: progress.set_current_status("common.statusUpscaling") progress.set_current_status_has_steps(False) self.socketio.emit("progressUpdate", progress.to_formatted_dict()) eventlet.sleep(0) image = self.esrgan.process( image=image, upsampler_scale=esrgan_parameters["level"], denoise_str=esrgan_parameters["denoise_str"], strength=esrgan_parameters["strength"], seed=seed, ) postprocessing = True all_parameters["upscale"] = [ esrgan_parameters["level"], esrgan_parameters["denoise_str"], esrgan_parameters["strength"], ] if self.canceled.is_set(): raise CanceledException if facetool_parameters: if facetool_parameters["type"] == "gfpgan": progress.set_current_status("common.statusRestoringFacesGFPGAN") elif facetool_parameters["type"] == "codeformer": progress.set_current_status("common.statusRestoringFacesCodeFormer") progress.set_current_status_has_steps(False) self.socketio.emit("progressUpdate", progress.to_formatted_dict()) eventlet.sleep(0) if facetool_parameters["type"] == "gfpgan": image = self.gfpgan.process( image=image, strength=facetool_parameters["strength"], seed=seed, ) elif facetool_parameters["type"] == "codeformer": image = self.codeformer.process( image=image, strength=facetool_parameters["strength"], fidelity=facetool_parameters["codeformer_fidelity"], seed=seed, device="cpu" if str(self.generate.device) == "mps" else self.generate.device, ) all_parameters["codeformer_fidelity"] = facetool_parameters["codeformer_fidelity"] postprocessing = True all_parameters["facetool_strength"] = facetool_parameters["strength"] all_parameters["facetool_type"] = facetool_parameters["type"] progress.set_current_status("common.statusSavingImage") self.socketio.emit("progressUpdate", progress.to_formatted_dict()) eventlet.sleep(0) # restore the stashed URLS and discard the paths, we are about to send the result to client all_parameters["init_img"] = ( init_img_url if generation_parameters["generation_mode"] == "img2img" else "" ) if "init_mask" in all_parameters: # TODO: store the mask in metadata all_parameters["init_mask"] = "" if generation_parameters["generation_mode"] == "unifiedCanvas": all_parameters["bounding_box"] = original_bounding_box metadata = self.parameters_to_generated_image_metadata(all_parameters) command = parameters_to_command(all_parameters) (width, height) = image.size generated_image_outdir = ( self.result_path if generation_parameters["generation_mode"] in ["txt2img", "img2img"] else self.temp_image_path ) path = self.save_result_image( image, command, metadata, generated_image_outdir, postprocessing=postprocessing, ) thumbnail_path = save_thumbnail(image, os.path.basename(path), self.thumbnail_image_path) logger.info(f'Image generated: "{path}"\n') self.write_log_message(f'[Generated] "{path}": {command}') if progress.total_iterations > progress.current_iteration: progress.set_current_step(1) progress.set_current_status("common.statusIterationComplete") progress.set_current_status_has_steps(False) else: progress.mark_complete() self.socketio.emit("progressUpdate", progress.to_formatted_dict()) eventlet.sleep(0) parsed_prompt, _ = get_prompt_structure(generation_parameters["prompt"]) with self.generate.model_context as model: tokens = ( None if type(parsed_prompt) is Blend else get_tokens_for_prompt_object(model.tokenizer, parsed_prompt) ) attention_maps_image_base64_url = ( None if attention_maps_image is None else image_to_dataURL(attention_maps_image) ) self.socketio.emit( "generationResult", { "url": self.get_url_from_image_path(path), "thumbnail": self.get_url_from_image_path(thumbnail_path), "mtime": os.path.getmtime(path), "metadata": metadata, "dreamPrompt": command, "width": width, "height": height, "boundingBox": original_bounding_box, "generationMode": generation_parameters["generation_mode"], "attentionMaps": attention_maps_image_base64_url, "tokens": tokens, }, ) eventlet.sleep(0) progress.set_current_iteration(progress.current_iteration + 1) self.generate.prompt2image( **generation_parameters, step_callback=image_progress, image_callback=image_done, ) except KeyboardInterrupt: # Clear the CUDA cache on an exception self.empty_cuda_cache() self.socketio.emit("processingCanceled") raise except CanceledException: # Clear the CUDA cache on an exception self.empty_cuda_cache() self.socketio.emit("processingCanceled") pass except Exception as e: # Clear the CUDA cache on an exception self.empty_cuda_cache() logger.error(e) self.handle_exceptions(e) def empty_cuda_cache(self): if self.generate.device.type == "cuda": import torch.cuda torch.cuda.empty_cache() def parameters_to_generated_image_metadata(self, parameters): try: # top-level metadata minus `image` or `images` metadata = self.get_system_config() # remove any image keys not mentioned in RFC #266 rfc266_img_fields = [ "type", "postprocessing", "sampler", "prompt", "seed", "variations", "steps", "cfg_scale", "threshold", "perlin", "step_number", "width", "height", "extra", "seamless", "hires_fix", ] rfc_dict = {} for item in parameters.items(): key, value = item if key in rfc266_img_fields: rfc_dict[key] = value postprocessing = [] rfc_dict["type"] = parameters["generation_mode"] # 'postprocessing' is either null or an if "facetool_strength" in parameters: facetool_parameters = { "type": str(parameters["facetool_type"]), "strength": float(parameters["facetool_strength"]), } if parameters["facetool_type"] == "codeformer": facetool_parameters["fidelity"] = float(parameters["codeformer_fidelity"]) postprocessing.append(facetool_parameters) if "upscale" in parameters: postprocessing.append( { "type": "esrgan", "scale": int(parameters["upscale"][0]), "denoise_str": int(parameters["upscale"][1]), "strength": float(parameters["upscale"][2]), } ) rfc_dict["postprocessing"] = postprocessing if len(postprocessing) > 0 else None # semantic drift rfc_dict["sampler"] = parameters["sampler_name"] # 'variations' should always exist and be an array, empty or consisting of {'seed': seed, 'weight': weight} pairs variations = [] if "with_variations" in parameters: variations = [{"seed": x[0], "weight": x[1]} for x in parameters["with_variations"]] rfc_dict["variations"] = variations if rfc_dict["type"] == "img2img": rfc_dict["strength"] = parameters["strength"] rfc_dict["fit"] = parameters["fit"] # TODO: Noncompliant rfc_dict["orig_hash"] = calculate_init_img_hash(self.get_image_path_from_url(parameters["init_img"])) rfc_dict["init_image_path"] = parameters["init_img"] # TODO: Noncompliant metadata["image"] = rfc_dict return metadata except Exception as e: self.handle_exceptions(e) def parameters_to_post_processed_image_metadata(self, parameters, original_image_path): try: current_metadata = retrieve_metadata(original_image_path)["sd-metadata"] postprocessing_metadata = {} """ if we don't have an original image metadata to reconstruct, need to record the original image and its hash """ if "image" not in current_metadata: current_metadata["image"] = {} orig_hash = calculate_init_img_hash(self.get_image_path_from_url(original_image_path)) postprocessing_metadata["orig_path"] = (original_image_path,) postprocessing_metadata["orig_hash"] = orig_hash if parameters["type"] == "esrgan": postprocessing_metadata["type"] = "esrgan" postprocessing_metadata["scale"] = parameters["upscale"][0] postprocessing_metadata["denoise_str"] = parameters["upscale"][1] postprocessing_metadata["strength"] = parameters["upscale"][2] elif parameters["type"] == "gfpgan": postprocessing_metadata["type"] = "gfpgan" postprocessing_metadata["strength"] = parameters["facetool_strength"] elif parameters["type"] == "codeformer": postprocessing_metadata["type"] = "codeformer" postprocessing_metadata["strength"] = parameters["facetool_strength"] postprocessing_metadata["fidelity"] = parameters["codeformer_fidelity"] else: raise TypeError(f"Invalid type: {parameters['type']}") if "postprocessing" in current_metadata["image"] and isinstance( current_metadata["image"]["postprocessing"], list ): current_metadata["image"]["postprocessing"].append(postprocessing_metadata) else: current_metadata["image"]["postprocessing"] = [postprocessing_metadata] return current_metadata except Exception as e: self.handle_exceptions(e) def save_result_image( self, image, command, metadata, output_dir, step_index=None, postprocessing=False, ): try: pngwriter = PngWriter(output_dir) number_prefix = pngwriter.unique_prefix() uuid = uuid4().hex truncated_uuid = uuid[:8] seed = "unknown_seed" if "image" in metadata: if "seed" in metadata["image"]: seed = metadata["image"]["seed"] filename = f"{number_prefix}.{truncated_uuid}.{seed}" if step_index: filename += f".{step_index}" if postprocessing: filename += ".postprocessed" filename += ".png" path = pngwriter.save_image_and_prompt_to_png( image=image, dream_prompt=command, metadata=metadata, name=filename, ) return os.path.abspath(path) except Exception as e: self.handle_exceptions(e) def make_unique_init_image_filename(self, name): try: uuid = uuid4().hex split = os.path.splitext(name) name = f"{split[0]}.{uuid}{split[1]}" return name except Exception as e: self.handle_exceptions(e) def calculate_real_steps(self, steps, strength, has_init_image): import math return math.floor(strength * steps) if has_init_image else steps def write_log_message(self, message): """Logs the filename and parameters used to generate or process that image to log file""" try: message = f"{message}\n" with open(self.log_path, "a", encoding="utf-8") as file: file.writelines(message) except Exception as e: self.handle_exceptions(e) def get_image_path_from_url(self, url): """Given a url to an image used by the client, returns the absolute file path to that image""" try: if "init-images" in url: return os.path.abspath(os.path.join(self.init_image_path, os.path.basename(url))) elif "mask-images" in url: return os.path.abspath(os.path.join(self.mask_image_path, os.path.basename(url))) elif "intermediates" in url: return os.path.abspath(os.path.join(self.intermediate_path, os.path.basename(url))) elif "temp-images" in url: return os.path.abspath(os.path.join(self.temp_image_path, os.path.basename(url))) elif "thumbnails" in url: return os.path.abspath(os.path.join(self.thumbnail_image_path, os.path.basename(url))) else: return os.path.abspath(os.path.join(self.result_path, os.path.basename(url))) except Exception as e: self.handle_exceptions(e) def get_url_from_image_path(self, path): """Given an absolute file path to an image, returns the URL that the client can use to load the image""" try: if "init-images" in path: return os.path.join(self.init_image_url, os.path.basename(path)) elif "mask-images" in path: return os.path.join(self.mask_image_url, os.path.basename(path)) elif "intermediates" in path: return os.path.join(self.intermediate_url, os.path.basename(path)) elif "temp-images" in path: return os.path.join(self.temp_image_url, os.path.basename(path)) elif "thumbnails" in path: return os.path.join(self.thumbnail_image_url, os.path.basename(path)) else: return os.path.join(self.result_url, os.path.basename(path)) except Exception as e: self.handle_exceptions(e) def save_file_unique_uuid_name(self, bytes, name, path): try: uuid = uuid4().hex truncated_uuid = uuid[:8] split = os.path.splitext(name) name = f"{split[0]}.{truncated_uuid}{split[1]}" file_path = os.path.join(path, name) os.makedirs(os.path.dirname(file_path), exist_ok=True) newFile = open(file_path, "wb") newFile.write(bytes) return file_path except Exception as e: self.handle_exceptions(e) def handle_exceptions(self, exception, emit_key: str = "error"): self.socketio.emit(emit_key, {"message": (str(exception))}) print("\n") traceback.print_exc() print("\n") class Progress: def __init__(self, generation_parameters=None): self.current_step = 1 self.total_steps = ( self._calculate_real_steps( steps=generation_parameters["steps"], strength=generation_parameters["strength"] if "strength" in generation_parameters else None, has_init_image="init_img" in generation_parameters, ) if generation_parameters else 1 ) self.current_iteration = 1 self.total_iterations = generation_parameters["iterations"] if generation_parameters else 1 self.current_status = "common.statusPreparing" self.is_processing = True self.current_status_has_steps = False self.has_error = False def set_current_step(self, current_step): self.current_step = current_step def set_total_steps(self, total_steps): self.total_steps = total_steps def set_current_iteration(self, current_iteration): self.current_iteration = current_iteration def set_total_iterations(self, total_iterations): self.total_iterations = total_iterations def set_current_status(self, current_status): self.current_status = current_status def set_is_processing(self, is_processing): self.is_processing = is_processing def set_current_status_has_steps(self, current_status_has_steps): self.current_status_has_steps = current_status_has_steps def set_has_error(self, has_error): self.has_error = has_error def mark_complete(self): self.current_status = "common.statusProcessingComplete" self.current_step = 0 self.total_steps = 0 self.current_iteration = 0 self.total_iterations = 0 self.is_processing = False def to_formatted_dict( self, ): return { "currentStep": self.current_step, "totalSteps": self.total_steps, "currentIteration": self.current_iteration, "totalIterations": self.total_iterations, "currentStatus": self.current_status, "isProcessing": self.is_processing, "currentStatusHasSteps": self.current_status_has_steps, "hasError": self.has_error, } def _calculate_real_steps(self, steps, strength, has_init_image): return math.floor(strength * steps) if has_init_image else steps class CanceledException(Exception): pass def copy_image_from_bounding_box(image: ImageType, x: int, y: int, width: int, height: int) -> ImageType: """ Returns a copy an image, cropped to a bounding box. """ with image as im: bounds = (x, y, x + width, y + height) im_cropped = im.crop(bounds) return im_cropped def dataURL_to_image(dataURL: str) -> ImageType: """ Converts a base64 image dataURL into an image. The dataURL is split on the first comma. """ image = Image.open( io.BytesIO( base64.decodebytes( bytes( dataURL.split(",", 1)[1], "utf-8", ) ) ) ) return image def image_to_dataURL(image: ImageType, image_format: str = "PNG") -> str: """ Converts an image into a base64 image dataURL. """ buffered = io.BytesIO() image.save(buffered, format=image_format) mime_type = Image.MIME.get(image_format.upper(), "image/" + image_format.lower()) image_base64 = f"data:{mime_type};base64," + base64.b64encode(buffered.getvalue()).decode("UTF-8") return image_base64 def dataURL_to_bytes(dataURL: str) -> bytes: """ Converts a base64 image dataURL into bytes. The dataURL is split on the first comma. """ return base64.decodebytes( bytes( dataURL.split(",", 1)[1], "utf-8", ) ) def paste_image_into_bounding_box( recipient_image: ImageType, donor_image: ImageType, x: int, y: int, width: int, height: int, ) -> ImageType: """ Pastes an image onto another with a bounding box. """ with recipient_image as im: bounds = (x, y, x + width, y + height) im.paste(donor_image, bounds) return recipient_image def save_thumbnail( image: ImageType, filename: str, path: str, size: int = 256, ) -> str: """ Saves a thumbnail of an image, returning its path. """ base_filename = os.path.splitext(filename)[0] thumbnail_path = os.path.join(path, base_filename + ".webp") if os.path.exists(thumbnail_path): return thumbnail_path thumbnail_width = size thumbnail_height = round(size * (image.height / image.width)) image_copy = image.copy() image_copy.thumbnail(size=(thumbnail_width, thumbnail_height)) image_copy.save(thumbnail_path, "WEBP") return thumbnail_path