# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) from contextlib import ExitStack from typing import List, Literal, Optional, Union import einops from pydantic import BaseModel, Field, validator import torch from diffusers import ControlNetModel, DPMSolverMultistepScheduler from diffusers.image_processor import VaeImageProcessor from diffusers.schedulers import SchedulerMixin as Scheduler from invokeai.app.util.misc import SEED_MAX, get_random_seed from invokeai.app.util.step_callback import stable_diffusion_step_callback from ..models.image import ImageCategory, ImageField, ResourceOrigin from ...backend.image_util.seamless import configure_model_padding from ...backend.stable_diffusion import PipelineIntermediateState from ...backend.stable_diffusion.diffusers_pipeline import ( ConditioningData, ControlNetData, StableDiffusionGeneratorPipeline, image_resized_to_grid_as_tensor) from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import \ PostprocessingSettings from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP from ...backend.util.devices import choose_torch_device, torch_dtype from ...backend.model_management.lora import ModelPatcher from .baseinvocation import (BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext) from .compel import ConditioningField from .controlnet_image_processors import ControlField from .image import ImageOutput from .model import ModelInfo, UNetField, VaeField class LatentsField(BaseModel): """A latents field used for passing latents between invocations""" latents_name: Optional[str] = Field(default=None, description="The name of the latents") class Config: schema_extra = {"required": ["latents_name"]} class LatentsOutput(BaseInvocationOutput): """Base class for invocations that output latents""" #fmt: off type: Literal["latents_output"] = "latents_output" # Inputs latents: LatentsField = Field(default=None, description="The output latents") width: int = Field(description="The width of the latents in pixels") height: int = Field(description="The height of the latents in pixels") #fmt: on def build_latents_output(latents_name: str, latents: torch.Tensor): return LatentsOutput( latents=LatentsField(latents_name=latents_name), width=latents.size()[3] * 8, height=latents.size()[2] * 8, ) class NoiseOutput(BaseInvocationOutput): """Invocation noise output""" #fmt: off type: Literal["noise_output"] = "noise_output" # Inputs noise: LatentsField = Field(default=None, description="The output noise") width: int = Field(description="The width of the noise in pixels") height: int = Field(description="The height of the noise in pixels") #fmt: on def build_noise_output(latents_name: str, latents: torch.Tensor): return NoiseOutput( noise=LatentsField(latents_name=latents_name), width=latents.size()[3] * 8, height=latents.size()[2] * 8, ) SAMPLER_NAME_VALUES = Literal[ tuple(list(SCHEDULER_MAP.keys())) ] def get_scheduler( context: InvocationContext, scheduler_info: ModelInfo, scheduler_name: str, ) -> Scheduler: scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP['ddim']) orig_scheduler_info = context.services.model_manager.get_model(**scheduler_info.dict()) with orig_scheduler_info as orig_scheduler: scheduler_config = orig_scheduler.config if "_backup" in scheduler_config: scheduler_config = scheduler_config["_backup"] scheduler_config = {**scheduler_config, **scheduler_extra_config, "_backup": scheduler_config} scheduler = scheduler_class.from_config(scheduler_config) # hack copied over from generate.py if not hasattr(scheduler, 'uses_inpainting_model'): scheduler.uses_inpainting_model = lambda: False return scheduler def get_noise(width:int, height:int, device:torch.device, seed:int = 0, latent_channels:int=4, use_mps_noise:bool=False, downsampling_factor:int = 8): # limit noise to only the diffusion image channels, not the mask channels input_channels = min(latent_channels, 4) use_device = "cpu" if (use_mps_noise or device.type == "mps") else device generator = torch.Generator(device=use_device).manual_seed(seed) x = torch.randn( [ 1, input_channels, height // downsampling_factor, width // downsampling_factor, ], dtype=torch_dtype(device), device=use_device, generator=generator, ).to(device) # if self.perlin > 0.0: # perlin_noise = self.get_perlin_noise( # width // self.downsampling_factor, height // self.downsampling_factor # ) # x = (1 - self.perlin) * x + self.perlin * perlin_noise return x class NoiseInvocation(BaseInvocation): """Generates latent noise.""" type: Literal["noise"] = "noise" # Inputs seed: int = Field(ge=0, le=SEED_MAX, description="The seed to use", default_factory=get_random_seed) width: int = Field(default=512, multiple_of=8, gt=0, description="The width of the resulting noise", ) height: int = Field(default=512, multiple_of=8, gt=0, description="The height of the resulting noise", ) # Schema customisation class Config(InvocationConfig): schema_extra = { "ui": { "tags": ["latents", "noise"], }, } @validator("seed", pre=True) def modulo_seed(cls, v): """Returns the seed modulo SEED_MAX to ensure it is within the valid range.""" return v % SEED_MAX def invoke(self, context: InvocationContext) -> NoiseOutput: device = torch.device(choose_torch_device()) noise = get_noise(self.width, self.height, device, self.seed) name = f'{context.graph_execution_state_id}__{self.id}' context.services.latents.save(name, noise) return build_noise_output(latents_name=name, latents=noise) # Text to image class TextToLatentsInvocation(BaseInvocation): """Generates latents from conditionings.""" type: Literal["t2l"] = "t2l" # Inputs # fmt: off positive_conditioning: Optional[ConditioningField] = Field(description="Positive conditioning for generation") negative_conditioning: Optional[ConditioningField] = Field(description="Negative conditioning for generation") noise: Optional[LatentsField] = Field(description="The noise to use") steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image") cfg_scale: Union[float, List[float]] = Field(default=7.5, ge=1, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", ) scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use" ) unet: UNetField = Field(default=None, description="UNet submodel") control: Union[ControlField, list[ControlField]] = Field(default=None, description="The control to use") #seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", ) #seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'") # fmt: on @validator("cfg_scale") def ge_one(cls, v): """validate that all cfg_scale values are >= 1""" if isinstance(v, list): for i in v: if i < 1: raise ValueError('cfg_scale must be greater than 1') else: if v < 1: raise ValueError('cfg_scale must be greater than 1') return v # Schema customisation class Config(InvocationConfig): schema_extra = { "ui": { "tags": ["latents"], "type_hints": { "model": "model", "control": "control", # "cfg_scale": "float", "cfg_scale": "number" } }, } # TODO: pass this an emitter method or something? or a session for dispatching? def dispatch_progress( self, context: InvocationContext, source_node_id: str, intermediate_state: PipelineIntermediateState ) -> None: stable_diffusion_step_callback( context=context, intermediate_state=intermediate_state, node=self.dict(), source_node_id=source_node_id, ) def get_conditioning_data(self, context: InvocationContext, scheduler) -> ConditioningData: c, extra_conditioning_info = context.services.latents.get(self.positive_conditioning.conditioning_name) uc, _ = context.services.latents.get(self.negative_conditioning.conditioning_name) custom_args = dict( eta=0.0, #ddim_eta ) if type(scheduler) is DPMSolverMultistepScheduler and scheduler.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"]: custom_args.update( generator=torch.Generator(device=uc.device).manual_seed(0), ) conditioning_data = ConditioningData( unconditioned_embeddings=uc, text_embeddings=c, guidance_scale=self.cfg_scale, extra=extra_conditioning_info, postprocessing_settings=PostprocessingSettings( threshold=0.0,#threshold, warmup=0.2,#warmup, h_symmetry_time_pct=None,#h_symmetry_time_pct, v_symmetry_time_pct=None#v_symmetry_time_pct, ), ).add_scheduler_args_if_applicable(scheduler, **custom_args) return conditioning_data def create_pipeline(self, unet, scheduler) -> StableDiffusionGeneratorPipeline: # TODO: #configure_model_padding( # unet, # self.seamless, # self.seamless_axes, #) class FakeVae: class FakeVaeConfig: def __init__(self): self.block_out_channels = [0] def __init__(self): self.config = FakeVae.FakeVaeConfig() return StableDiffusionGeneratorPipeline( vae=FakeVae(), # TODO: oh... text_encoder=None, tokenizer=None, unet=unet, scheduler=scheduler, safety_checker=None, feature_extractor=None, requires_safety_checker=False, precision="float16" if unet.dtype == torch.float16 else "float32", ) def prep_control_data( self, context: InvocationContext, model: StableDiffusionGeneratorPipeline, # really only need model for dtype and device control_input: List[ControlField], latents_shape: List[int], do_classifier_free_guidance: bool = True, ) -> List[ControlNetData]: # assuming fixed dimensional scaling of 8:1 for image:latents control_height_resize = latents_shape[2] * 8 control_width_resize = latents_shape[3] * 8 if control_input is None: # print("control input is None") control_list = None elif isinstance(control_input, list) and len(control_input) == 0: # print("control input is empty list") control_list = None elif isinstance(control_input, ControlField): # print("control input is ControlField") control_list = [control_input] elif isinstance(control_input, list) and len(control_input) > 0 and isinstance(control_input[0], ControlField): # print("control input is list[ControlField]") control_list = control_input else: # print("input control is unrecognized:", type(self.control)) control_list = None if (control_list is None): control_data = None # from above handling, any control that is not None should now be of type list[ControlField] else: # FIXME: add checks to skip entry if model or image is None # and if weight is None, populate with default 1.0? control_data = [] control_models = [] for control_info in control_list: # handle control models if ("," in control_info.control_model): control_model_split = control_info.control_model.split(",") control_name = control_model_split[0] control_subfolder = control_model_split[1] print("Using HF model subfolders") print(" control_name: ", control_name) print(" control_subfolder: ", control_subfolder) control_model = ControlNetModel.from_pretrained(control_name, subfolder=control_subfolder, torch_dtype=model.unet.dtype).to(model.device) else: control_model = ControlNetModel.from_pretrained(control_info.control_model, torch_dtype=model.unet.dtype).to(model.device) control_models.append(control_model) control_image_field = control_info.image input_image = context.services.images.get_pil_image(control_image_field.image_name) # self.image.image_type, self.image.image_name # FIXME: still need to test with different widths, heights, devices, dtypes # and add in batch_size, num_images_per_prompt? # and do real check for classifier_free_guidance? # prepare_control_image should return torch.Tensor of shape(batch_size, 3, height, width) control_image = model.prepare_control_image( image=input_image, do_classifier_free_guidance=do_classifier_free_guidance, width=control_width_resize, height=control_height_resize, # batch_size=batch_size * num_images_per_prompt, # num_images_per_prompt=num_images_per_prompt, device=control_model.device, dtype=control_model.dtype, ) control_item = ControlNetData(model=control_model, image_tensor=control_image, weight=control_info.control_weight, begin_step_percent=control_info.begin_step_percent, end_step_percent=control_info.end_step_percent) control_data.append(control_item) # MultiControlNetModel has been refactored out, just need list[ControlNetData] return control_data def invoke(self, context: InvocationContext) -> LatentsOutput: noise = context.services.latents.get(self.noise.latents_name) # Get the source node id (we are invoking the prepared node) graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id) source_node_id = graph_execution_state.prepared_source_mapping[self.id] def step_callback(state: PipelineIntermediateState): self.dispatch_progress(context, source_node_id, state) unet_info = context.services.model_manager.get_model(**self.unet.unet.dict()) with unet_info as unet,\ ExitStack() as stack: scheduler = get_scheduler( context=context, scheduler_info=self.unet.scheduler, scheduler_name=self.scheduler, ) pipeline = self.create_pipeline(unet, scheduler) conditioning_data = self.get_conditioning_data(context, scheduler) loras = [(stack.enter_context(context.services.model_manager.get_model(**lora.dict(exclude={"weight"}))), lora.weight) for lora in self.unet.loras] control_data = self.prep_control_data( model=pipeline, context=context, control_input=self.control, latents_shape=noise.shape, # do_classifier_free_guidance=(self.cfg_scale >= 1.0)) do_classifier_free_guidance=True, ) with ModelPatcher.apply_lora_unet(pipeline.unet, loras): # TODO: Verify the noise is the right size result_latents, result_attention_map_saver = pipeline.latents_from_embeddings( latents=torch.zeros_like(noise, dtype=torch_dtype(unet.device)), noise=noise, num_inference_steps=self.steps, conditioning_data=conditioning_data, control_data=control_data, # list[ControlNetData] callback=step_callback, ) # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 torch.cuda.empty_cache() name = f'{context.graph_execution_state_id}__{self.id}' context.services.latents.save(name, result_latents) return build_latents_output(latents_name=name, latents=result_latents) class LatentsToLatentsInvocation(TextToLatentsInvocation): """Generates latents using latents as base image.""" type: Literal["l2l"] = "l2l" # Inputs latents: Optional[LatentsField] = Field(description="The latents to use as a base image") strength: float = Field(default=0.7, ge=0, le=1, description="The strength of the latents to use") # Schema customisation class Config(InvocationConfig): schema_extra = { "ui": { "tags": ["latents"], "type_hints": { "model": "model", "control": "control", "cfg_scale": "number", } }, } def invoke(self, context: InvocationContext) -> LatentsOutput: noise = context.services.latents.get(self.noise.latents_name) latent = context.services.latents.get(self.latents.latents_name) # Get the source node id (we are invoking the prepared node) graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id) source_node_id = graph_execution_state.prepared_source_mapping[self.id] def step_callback(state: PipelineIntermediateState): self.dispatch_progress(context, source_node_id, state) unet_info = context.services.model_manager.get_model( **self.unet.unet.dict(), ) with unet_info as unet,\ ExitStack() as stack: scheduler = get_scheduler( context=context, scheduler_info=self.unet.scheduler, scheduler_name=self.scheduler, ) pipeline = self.create_pipeline(unet, scheduler) conditioning_data = self.get_conditioning_data(context, scheduler) control_data = self.prep_control_data( model=pipeline, context=context, control_input=self.control, latents_shape=noise.shape, # do_classifier_free_guidance=(self.cfg_scale >= 1.0)) do_classifier_free_guidance=True, ) # TODO: Verify the noise is the right size initial_latents = latent if self.strength < 1.0 else torch.zeros_like( latent, device=unet.device, dtype=latent.dtype ) timesteps, _ = pipeline.get_img2img_timesteps( self.steps, self.strength, device=unet.device, ) loras = [(stack.enter_context(context.services.model_manager.get_model(**lora.dict(exclude={"weight"}))), lora.weight) for lora in self.unet.loras] with ModelPatcher.apply_lora_unet(pipeline.unet, loras): result_latents, result_attention_map_saver = pipeline.latents_from_embeddings( latents=initial_latents, timesteps=timesteps, noise=noise, num_inference_steps=self.steps, conditioning_data=conditioning_data, control_data=control_data, # list[ControlNetData] callback=step_callback ) # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 torch.cuda.empty_cache() name = f'{context.graph_execution_state_id}__{self.id}' context.services.latents.save(name, result_latents) return build_latents_output(latents_name=name, latents=result_latents) # Latent to image class LatentsToImageInvocation(BaseInvocation): """Generates an image from latents.""" type: Literal["l2i"] = "l2i" # Inputs latents: Optional[LatentsField] = Field(description="The latents to generate an image from") vae: VaeField = Field(default=None, description="Vae submodel") tiled: bool = Field(default=False, description="Decode latents by overlaping tiles(less memory consumption)") # Schema customisation class Config(InvocationConfig): schema_extra = { "ui": { "tags": ["latents", "image"], }, } @torch.no_grad() def invoke(self, context: InvocationContext) -> ImageOutput: latents = context.services.latents.get(self.latents.latents_name) vae_info = context.services.model_manager.get_model( **self.vae.vae.dict(), ) with vae_info as vae: if self.tiled or context.services.configuration.tiled_decode: vae.enable_tiling() else: vae.disable_tiling() # clear memory as vae decode can request a lot torch.cuda.empty_cache() with torch.inference_mode(): # copied from diffusers pipeline latents = latents / vae.config.scaling_factor image = vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # denormalize # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 np_image = image.cpu().permute(0, 2, 3, 1).float().numpy() image = VaeImageProcessor.numpy_to_pil(np_image)[0] torch.cuda.empty_cache() image_dto = context.services.images.create( image=image, image_origin=ResourceOrigin.INTERNAL, image_category=ImageCategory.GENERAL, node_id=self.id, session_id=context.graph_execution_state_id, ) return ImageOutput( image=ImageField(image_name=image_dto.image_name), width=image_dto.width, height=image_dto.height, ) LATENTS_INTERPOLATION_MODE = Literal[ "nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact" ] class ResizeLatentsInvocation(BaseInvocation): """Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8.""" type: Literal["lresize"] = "lresize" # Inputs latents: Optional[LatentsField] = Field(description="The latents to resize") width: int = Field(ge=64, multiple_of=8, description="The width to resize to (px)") height: int = Field(ge=64, multiple_of=8, description="The height to resize to (px)") mode: LATENTS_INTERPOLATION_MODE = Field(default="bilinear", description="The interpolation mode") antialias: bool = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)") def invoke(self, context: InvocationContext) -> LatentsOutput: latents = context.services.latents.get(self.latents.latents_name) resized_latents = torch.nn.functional.interpolate( latents, size=(self.height // 8, self.width // 8), mode=self.mode, antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False, ) # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 torch.cuda.empty_cache() name = f"{context.graph_execution_state_id}__{self.id}" # context.services.latents.set(name, resized_latents) context.services.latents.save(name, resized_latents) return build_latents_output(latents_name=name, latents=resized_latents) class ScaleLatentsInvocation(BaseInvocation): """Scales latents by a given factor.""" type: Literal["lscale"] = "lscale" # Inputs latents: Optional[LatentsField] = Field(description="The latents to scale") scale_factor: float = Field(gt=0, description="The factor by which to scale the latents") mode: LATENTS_INTERPOLATION_MODE = Field(default="bilinear", description="The interpolation mode") antialias: bool = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)") def invoke(self, context: InvocationContext) -> LatentsOutput: latents = context.services.latents.get(self.latents.latents_name) # resizing resized_latents = torch.nn.functional.interpolate( latents, scale_factor=self.scale_factor, mode=self.mode, antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False, ) # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 torch.cuda.empty_cache() name = f"{context.graph_execution_state_id}__{self.id}" # context.services.latents.set(name, resized_latents) context.services.latents.save(name, resized_latents) return build_latents_output(latents_name=name, latents=resized_latents) class ImageToLatentsInvocation(BaseInvocation): """Encodes an image into latents.""" type: Literal["i2l"] = "i2l" # Inputs image: Union[ImageField, None] = Field(description="The image to encode") vae: VaeField = Field(default=None, description="Vae submodel") tiled: bool = Field(default=False, description="Encode latents by overlaping tiles(less memory consumption)") # Schema customisation class Config(InvocationConfig): schema_extra = { "ui": { "tags": ["latents", "image"], }, } @torch.no_grad() def invoke(self, context: InvocationContext) -> LatentsOutput: # image = context.services.images.get( # self.image.image_type, self.image.image_name # ) image = context.services.images.get_pil_image(self.image.image_name) #vae_info = context.services.model_manager.get_model(**self.vae.vae.dict()) vae_info = context.services.model_manager.get_model( **self.vae.vae.dict(), ) image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB")) if image_tensor.dim() == 3: image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w") with vae_info as vae: if self.tiled: vae.enable_tiling() else: vae.disable_tiling() # non_noised_latents_from_image image_tensor = image_tensor.to(device=vae.device, dtype=vae.dtype) with torch.inference_mode(): image_tensor_dist = vae.encode(image_tensor).latent_dist latents = image_tensor_dist.sample().to( dtype=vae.dtype ) # FIXME: uses torch.randn. make reproducible! latents = 0.18215 * latents name = f"{context.graph_execution_state_id}__{self.id}" # context.services.latents.set(name, latents) context.services.latents.save(name, latents) return build_latents_output(latents_name=name, latents=latents)