""" invokeai.backend.generator.img2img descends from .generator """ from typing import Optional import torch from accelerate.utils import set_seed from diffusers import logging from ..stable_diffusion import ( ConditioningData, PostprocessingSettings, StableDiffusionGeneratorPipeline, ) from .base import Generator class Img2Img(Generator): def __init__(self, model, precision): super().__init__(model, precision) self.init_latent = None # by get_noise() def get_make_image( self, prompt, sampler, steps, cfg_scale, ddim_eta, conditioning, init_image, strength, step_callback=None, threshold=0.0, warmup=0.2, perlin=0.0, h_symmetry_time_pct=None, v_symmetry_time_pct=None, attention_maps_callback=None, **kwargs, ): """ Returns a function returning an image derived from the prompt and the initial image Return value depends on the seed at the time you call it. """ self.perlin = perlin # noinspection PyTypeChecker pipeline: StableDiffusionGeneratorPipeline = self.model pipeline.scheduler = sampler uc, c, extra_conditioning_info = conditioning conditioning_data = ConditioningData( uc, c, cfg_scale, extra_conditioning_info, postprocessing_settings=PostprocessingSettings( threshold=threshold, warmup=warmup, h_symmetry_time_pct=h_symmetry_time_pct, v_symmetry_time_pct=v_symmetry_time_pct, ), ).add_scheduler_args_if_applicable(pipeline.scheduler, eta=ddim_eta) def make_image(x_T: torch.Tensor, seed: int): # FIXME: use x_T for initial seeded noise # We're not at the moment because the pipeline automatically resizes init_image if # necessary, which the x_T input might not match. # In the meantime, reset the seed prior to generating pipeline output so we at least get the same result. logging.set_verbosity_error() # quench safety check warnings pipeline_output = pipeline.img2img_from_embeddings( init_image, strength, steps, conditioning_data, noise_func=self.get_noise_like, callback=step_callback, seed=seed, ) if ( pipeline_output.attention_map_saver is not None and attention_maps_callback is not None ): attention_maps_callback(pipeline_output.attention_map_saver) return pipeline.numpy_to_pil(pipeline_output.images)[0] return make_image def get_noise_like(self, like: torch.Tensor): device = like.device if device.type == "mps": x = torch.randn_like(like, device="cpu").to(device) else: x = torch.randn_like(like, device=device) if self.perlin > 0.0: shape = like.shape x = (1 - self.perlin) * x + self.perlin * self.get_perlin_noise( shape[3], shape[2] ) return x