""" invokeai.backend.model_management.model_merge exports: merge_diffusion_models() -- combine multiple models by location and return a pipeline object merge_diffusion_models_and_commit() -- combine multiple models by ModelManager ID and write to models.yaml Copyright (c) 2023 Lincoln Stein and the InvokeAI Development Team """ import warnings from enum import Enum from pathlib import Path from diffusers import DiffusionPipeline from diffusers import logging as dlogging from typing import List import invokeai.backend.util.logging as logger from invokeai.app.services.config import InvokeAIAppConfig from ...backend.model_management import ModelManager, ModelType, BaseModelType, ModelVariantType class MergeInterpolationMethod(str, Enum): Sigmoid = "sigmoid" InvSigmoid = "inv_sigmoid" AddDifference = "add_difference" def merge_diffusion_models( model_paths: List[Path], alpha: float = 0.5, interp: MergeInterpolationMethod = None, force: bool = False, **kwargs, ) -> DiffusionPipeline: """ :param model_paths: up to three models, designated by their local paths or HuggingFace repo_ids :param alpha: The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2 :param interp: The interpolation method to use for the merging. Supports "sigmoid", "inv_sigmoid", "add_difference" and None. Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_difference" is supported. :param force: Whether to ignore mismatch in model_config.json for the current models. Defaults to False. **kwargs - the default DiffusionPipeline.get_config_dict kwargs: cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map """ with warnings.catch_warnings(): warnings.simplefilter("ignore") verbosity = dlogging.get_verbosity() dlogging.set_verbosity_error() pipe = DiffusionPipeline.from_pretrained( model_paths[0], custom_pipeline="checkpoint_merger", ) merged_pipe = pipe.merge( pretrained_model_name_or_path_list=model_paths, alpha=alpha, interp=interp.value if interp else None, #diffusers API treats None as "weighted sum" force=force, **kwargs, ) dlogging.set_verbosity(verbosity) return merged_pipe def merge_diffusion_models_and_save ( models: List["str"], base_model: BaseModelType, merged_model_name: str, config: InvokeAIAppConfig, alpha: float = 0.5, interp: MergeInterpolationMethod = None, force: bool = False, **kwargs, ): """ :param models: up to three models, designated by their InvokeAI models.yaml model name :param base_model: base model (must be the same for all merged models!) :param merged_model_name: name for new model :param alpha: The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2 :param interp: The interpolation method to use for the merging. Supports "weighted_average", "sigmoid", "inv_sigmoid", "add_difference" and None. Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_difference" is supported. Add_difference is A+(B-C). :param force: Whether to ignore mismatch in model_config.json for the current models. Defaults to False. **kwargs - the default DiffusionPipeline.get_config_dict kwargs: cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map """ model_manager = ModelManager(config.model_conf_path) model_paths = list() vae = None for mod in models: info = model_manager.model_info(mod, base_model=base_model, model_type=ModelType.main) assert info, f"model {mod}, base_model {base_model}, is unknown" assert info["format"] == "diffusers", f"{mod} is not a diffusers model. It must be optimized before merging" assert info["variant"] == "normal", (f"{mod} is a {info['variant']} model, which cannot currently be merged") if mod == models[0]: vae = info["vae"] model_paths.extend([info["path"]]) merged_pipe = merge_diffusion_models( model_paths, alpha, interp, force, **kwargs ) dump_path = config.models_path / base_model.value / ModelType.main.value dump_path.mkdir(parents=True, exist_ok=True) dump_path = dump_path / merged_model_name merged_pipe.save_pretrained(dump_path, safe_serialization=1) attributes = dict( path = dump_path, description = f"Merge of models {', '.join(models)}", model_format = "diffusers", variant = ModelVariantType.Normal.value, vae = vae, ) model_manager.add_model(merged_model_name, base_model = base_model, model_type = ModelType.Main, model_attributes = attributes, clobber = True )