from __future__ import annotations from contextlib import contextmanager from typing import TYPE_CHECKING, Dict, Optional, Set, Tuple import torch from diffusers import UNet2DConditionModel from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase from invokeai.backend.util.devices import TorchDevice if TYPE_CHECKING: from invokeai.app.invocations.model import ModelIdentifierField from invokeai.app.services.shared.invocation_context import InvocationContext from invokeai.backend.lora import LoRAModelRaw class LoRAExt(ExtensionBase): def __init__( self, node_context: InvocationContext, model_id: ModelIdentifierField, weight: float, ): super().__init__() self._node_context = node_context self._model_id = model_id self._weight = weight @contextmanager def patch_unet(self, unet: UNet2DConditionModel, cached_weights: Optional[Dict[str, torch.Tensor]] = None): lora_model = self._node_context.models.load(self._model_id).model modified_cached_weights, modified_weights = self.patch_model( model=unet, prefix="lora_unet_", lora=lora_model, lora_weight=self._weight, cached_weights=cached_weights, ) del lora_model yield modified_cached_weights, modified_weights @classmethod def patch_model( cls, model: torch.nn.Module, prefix: str, lora: LoRAModelRaw, lora_weight: float, cached_weights: Optional[Dict[str, torch.Tensor]] = None, ): """ Apply one or more LoRAs to a model. :param model: The model to patch. :param lora: LoRA model to patch in. :param lora_weight: LoRA patch weight. :param prefix: A string prefix that precedes keys used in the LoRAs weight layers. :cached_weights: Read-only copy of the model's state dict in CPU, for unpatching purposes. """ if cached_weights is None: cached_weights = {} modified_weights: Dict[str, torch.Tensor] = {} modified_cached_weights: Set[str] = set() with torch.no_grad(): # assert lora.device.type == "cpu" for layer_key, layer in lora.layers.items(): if not layer_key.startswith(prefix): continue # TODO(ryand): A non-negligible amount of time is currently spent resolving LoRA keys. This # should be improved in the following ways: # 1. The key mapping could be more-efficiently pre-computed. This would save time every time a # LoRA model is applied. # 2. From an API perspective, there's no reason that the `ModelPatcher` should be aware of the # intricacies of Stable Diffusion key resolution. It should just expect the input LoRA # weights to have valid keys. assert isinstance(model, torch.nn.Module) module_key, module = cls._resolve_lora_key(model, layer_key, prefix) # All of the LoRA weight calculations will be done on the same device as the module weight. # (Performance will be best if this is a CUDA device.) device = module.weight.device dtype = module.weight.dtype layer_scale = layer.alpha / layer.rank if (layer.alpha and layer.rank) else 1.0 # We intentionally move to the target device first, then cast. Experimentally, this was found to # be significantly faster for 16-bit CPU tensors being moved to a CUDA device than doing the # same thing in a single call to '.to(...)'. layer.to(device=device) layer.to(dtype=torch.float32) # TODO(ryand): Using torch.autocast(...) over explicit casting may offer a speed benefit on CUDA # devices here. Experimentally, it was found to be very slow on CPU. More investigation needed. for param_name, lora_param_weight in layer.get_parameters(module).items(): param_key = module_key + "." + param_name module_param = module.get_parameter(param_name) # save original weight if param_key not in modified_cached_weights and param_key not in modified_weights: if param_key in cached_weights: modified_cached_weights.add(param_key) else: modified_weights[param_key] = module_param.detach().to( device=TorchDevice.CPU_DEVICE, copy=True ) if module_param.shape != lora_param_weight.shape: # TODO: debug on lycoris lora_param_weight = lora_param_weight.reshape(module_param.shape) lora_param_weight *= lora_weight * layer_scale module_param += lora_param_weight.to(dtype=dtype) layer.to(device=TorchDevice.CPU_DEVICE) return modified_cached_weights, modified_weights @staticmethod def _resolve_lora_key(model: torch.nn.Module, lora_key: str, prefix: str) -> Tuple[str, torch.nn.Module]: assert "." not in lora_key if not lora_key.startswith(prefix): raise Exception(f"lora_key with invalid prefix: {lora_key}, {prefix}") module = model module_key = "" key_parts = lora_key[len(prefix) :].split("_") submodule_name = key_parts.pop(0) while len(key_parts) > 0: try: module = module.get_submodule(submodule_name) module_key += "." + submodule_name submodule_name = key_parts.pop(0) except Exception: submodule_name += "_" + key_parts.pop(0) module = module.get_submodule(submodule_name) module_key = (module_key + "." + submodule_name).lstrip(".") return (module_key, module)