#!/usr/bin/env python # Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein) # Before running stable-diffusion on an internet-isolated machine, # run this script from one with internet connectivity. The # two machines must share a common .cache directory. """ This is the npyscreen frontend to the model installation application. The work is actually done in backend code in model_install_backend.py. """ import argparse import os import sys from argparse import Namespace from pathlib import Path from shutil import get_terminal_size from typing import List import npyscreen import torch from npyscreen import widget from omegaconf import OmegaConf from invokeai.backend.globals import Globals, global_config_dir from ...backend.config.model_install_backend import ( Dataset_path, default_config_file, default_dataset, get_root, install_requested_models, recommended_datasets, ) from ...backend.util import choose_precision, choose_torch_device from .widgets import ( CenteredTitleText, MultiSelectColumns, OffsetButtonPress, TextBox, set_min_terminal_size, ) # minimum size for the UI MIN_COLS = 120 MIN_LINES = 45 class addModelsForm(npyscreen.FormMultiPage): # for responsive resizing - disabled # FIX_MINIMUM_SIZE_WHEN_CREATED = False def __init__(self, parentApp, name, multipage=False, *args, **keywords): self.multipage = multipage self.initial_models = OmegaConf.load(Dataset_path) try: self.existing_models = OmegaConf.load(default_config_file()) except: self.existing_models = dict() self.starter_model_list = [ x for x in list(self.initial_models.keys()) if x not in self.existing_models ] self.installed_models = dict() super().__init__(parentApp=parentApp, name=name, *args, **keywords) def create(self): window_width, window_height = get_terminal_size() starter_model_labels = self._get_starter_model_labels() recommended_models = [ x for x in self.starter_model_list if self.initial_models[x].get("recommended", False) ] self.installed_models = sorted( [x for x in list(self.initial_models.keys()) if x in self.existing_models] ) self.nextrely -= 1 self.add_widget_intelligent( npyscreen.FixedText, value="Use ctrl-N and ctrl-P to move to the ext and

revious fields,", editable=False, color="CAUTION", ) self.add_widget_intelligent( npyscreen.FixedText, value="Use cursor arrows to make a selection, and space to toggle checkboxes.", editable=False, color="CAUTION", ) self.nextrely += 1 if len(self.installed_models) > 0: self.add_widget_intelligent( CenteredTitleText, name="== INSTALLED STARTER MODELS ==", editable=False, color="CONTROL", ) self.nextrely -= 1 self.add_widget_intelligent( CenteredTitleText, name="Currently installed starter models. Uncheck to delete:", editable=False, labelColor="CAUTION", ) self.nextrely -= 1 columns = self._get_columns() self.previously_installed_models = self.add_widget_intelligent( MultiSelectColumns, columns=columns, values=self.installed_models, value=[x for x in range(0, len(self.installed_models))], max_height=1 + len(self.installed_models) // columns, relx=4, slow_scroll=True, scroll_exit=True, ) self.purge_deleted = self.add_widget_intelligent( npyscreen.Checkbox, name="Purge deleted models from disk", value=False, scroll_exit=True, relx=4, ) self.nextrely += 1 if len(self.starter_model_list) > 0: self.add_widget_intelligent( CenteredTitleText, name="== STARTER MODELS (recommended ones selected) ==", editable=False, color="CONTROL", ) self.nextrely -= 1 self.add_widget_intelligent( CenteredTitleText, name="Select from a starter set of Stable Diffusion models from HuggingFace.", editable=False, labelColor="CAUTION", ) self.nextrely -= 1 # if user has already installed some initial models, then don't patronize them # by showing more recommendations show_recommended = not self.existing_models self.models_selected = self.add_widget_intelligent( npyscreen.MultiSelect, name="Install Starter Models", values=starter_model_labels, value=[ self.starter_model_list.index(x) for x in self.starter_model_list if show_recommended and x in recommended_models ], max_height=len(starter_model_labels) + 1, relx=4, scroll_exit=True, ) self.add_widget_intelligent( CenteredTitleText, name="== IMPORT LOCAL AND REMOTE MODELS ==", editable=False, color="CONTROL", ) self.nextrely -= 1 for line in [ "In the box below, enter URLs, file paths, or HuggingFace repository IDs.", "Separate model names by lines or whitespace (Use shift-control-V to paste):", ]: self.add_widget_intelligent( CenteredTitleText, name=line, editable=False, labelColor="CONTROL", relx=4, ) self.nextrely -= 1 self.import_model_paths = self.add_widget_intelligent( TextBox, max_height=7, scroll_exit=True, editable=True, relx=4 ) self.nextrely += 1 self.show_directory_fields = self.add_widget_intelligent( npyscreen.FormControlCheckbox, name="Select a directory for models to import", value=False, ) self.autoload_directory = self.add_widget_intelligent( npyscreen.TitleFilename, name="Directory ( autocompletes):", select_dir=True, must_exist=True, use_two_lines=False, labelColor="DANGER", begin_entry_at=34, scroll_exit=True, ) self.autoscan_on_startup = self.add_widget_intelligent( npyscreen.Checkbox, name="Scan this directory each time InvokeAI starts for new models to import", value=False, relx=4, scroll_exit=True, ) self.nextrely += 1 self.convert_models = self.add_widget_intelligent( npyscreen.TitleSelectOne, name="== CONVERT IMPORTED MODELS INTO DIFFUSERS==", values=["Keep original format", "Convert to diffusers"], value=0, begin_entry_at=4, max_height=4, hidden=True, # will appear when imported models box is edited scroll_exit=True, ) self.cancel = self.add_widget_intelligent( npyscreen.ButtonPress, name="CANCEL", rely=-3, when_pressed_function=self.on_cancel, ) done_label = "DONE" back_label = "BACK" button_length = len(done_label) button_offset = 0 if self.multipage: button_length += len(back_label) + 1 button_offset += len(back_label) + 1 self.back_button = self.add_widget_intelligent( OffsetButtonPress, name=back_label, relx=(window_width - button_length) // 2, offset=-3, rely=-3, when_pressed_function=self.on_back, ) self.ok_button = self.add_widget_intelligent( OffsetButtonPress, name=done_label, offset=+3, relx=button_offset + 1 + (window_width - button_length) // 2, rely=-3, when_pressed_function=self.on_ok, ) for i in [self.autoload_directory, self.autoscan_on_startup]: self.show_directory_fields.addVisibleWhenSelected(i) self.show_directory_fields.when_value_edited = self._clear_scan_directory self.import_model_paths.when_value_edited = self._show_hide_convert self.autoload_directory.when_value_edited = self._show_hide_convert def resize(self): super().resize() if hasattr(self, "models_selected"): self.models_selected.values = self._get_starter_model_labels() def _clear_scan_directory(self): if not self.show_directory_fields.value: self.autoload_directory.value = "" def _show_hide_convert(self): model_paths = self.import_model_paths.value or "" autoload_directory = self.autoload_directory.value or "" self.convert_models.hidden = ( len(model_paths) == 0 and len(autoload_directory) == 0 ) def _get_starter_model_labels(self) -> List[str]: window_width, window_height = get_terminal_size() label_width = 25 checkbox_width = 4 spacing_width = 2 description_width = window_width - label_width - checkbox_width - spacing_width im = self.initial_models names = self.starter_model_list descriptions = [ im[x].description[0 : description_width - 3] + "..." if len(im[x].description) > description_width else im[x].description for x in names ] return [ f"%-{label_width}s %s" % (names[x], descriptions[x]) for x in range(0, len(names)) ] def _get_columns(self) -> int: window_width, window_height = get_terminal_size() cols = ( 4 if window_width > 240 else 3 if window_width > 160 else 2 if window_width > 80 else 1 ) return min(cols, len(self.installed_models)) def on_ok(self): self.parentApp.setNextForm(None) self.editing = False self.parentApp.user_cancelled = False self.marshall_arguments() def on_back(self): self.parentApp.switchFormPrevious() self.editing = False def on_cancel(self): if npyscreen.notify_yes_no( "Are you sure you want to cancel?\nYou may re-run this script later using the invoke.sh or invoke.bat command.\n" ): self.parentApp.setNextForm(None) self.parentApp.user_cancelled = True self.editing = False def marshall_arguments(self): """ Assemble arguments and store as attributes of the application: .starter_models: dict of model names to install from INITIAL_CONFIGURE.yaml True => Install False => Remove .scan_directory: Path to a directory of models to scan and import .autoscan_on_startup: True if invokeai should scan and import at startup time .import_model_paths: list of URLs, repo_ids and file paths to import .convert_to_diffusers: if True, convert legacy checkpoints into diffusers """ # we're using a global here rather than storing the result in the parentapp # due to some bug in npyscreen that is causing attributes to be lost selections = self.parentApp.user_selections # starter models to install/remove if hasattr(self, "models_selected"): starter_models = dict( map( lambda x: (self.starter_model_list[x], True), self.models_selected.value, ) ) else: starter_models = dict() selections.purge_deleted_models = False if hasattr(self, "previously_installed_models"): unchecked = [ self.previously_installed_models.values[x] for x in range(0, len(self.previously_installed_models.values)) if x not in self.previously_installed_models.value ] starter_models.update(map(lambda x: (x, False), unchecked)) selections.purge_deleted_models = self.purge_deleted.value selections.starter_models = starter_models # load directory and whether to scan on startup if self.show_directory_fields.value: selections.scan_directory = self.autoload_directory.value selections.autoscan_on_startup = self.autoscan_on_startup.value else: selections.scan_directory = None selections.autoscan_on_startup = False # URLs and the like selections.import_model_paths = self.import_model_paths.value.split() selections.convert_to_diffusers = self.convert_models.value[0] == 1 class AddModelApplication(npyscreen.NPSAppManaged): def __init__(self): super().__init__() self.user_cancelled = False self.user_selections = Namespace( starter_models=None, purge_deleted_models=False, scan_directory=None, autoscan_on_startup=None, import_model_paths=None, convert_to_diffusers=None, ) def onStart(self): npyscreen.setTheme(npyscreen.Themes.DefaultTheme) self.main_form = self.addForm( "MAIN", addModelsForm, name="Install Stable Diffusion Models" ) # -------------------------------------------------------- def process_and_execute(opt: Namespace, selections: Namespace): models_to_remove = [ x for x in selections.starter_models if not selections.starter_models[x] ] models_to_install = [ x for x in selections.starter_models if selections.starter_models[x] ] directory_to_scan = selections.scan_directory scan_at_startup = selections.autoscan_on_startup potential_models_to_install = selections.import_model_paths convert_to_diffusers = selections.convert_to_diffusers install_requested_models( install_initial_models=models_to_install, remove_models=models_to_remove, scan_directory=Path(directory_to_scan) if directory_to_scan else None, external_models=potential_models_to_install, scan_at_startup=scan_at_startup, convert_to_diffusers=convert_to_diffusers, precision="float32" if opt.full_precision else choose_precision(torch.device(choose_torch_device())), purge_deleted=selections.purge_deleted_models, config_file_path=Path(opt.config_file) if opt.config_file else None, ) # -------------------------------------------------------- def select_and_download_models(opt: Namespace): precision = ( "float32" if opt.full_precision else choose_precision(torch.device(choose_torch_device())) ) if opt.default_only: install_requested_models( install_initial_models=default_dataset(), precision=precision, ) elif opt.yes_to_all: install_requested_models( install_initial_models=recommended_datasets(), precision=precision, ) else: set_min_terminal_size(MIN_COLS, MIN_LINES) installApp = AddModelApplication() installApp.run() if not installApp.user_cancelled: process_and_execute(opt, installApp.user_selections) # ------------------------------------- def main(): parser = argparse.ArgumentParser(description="InvokeAI model downloader") parser.add_argument( "--full-precision", dest="full_precision", action=argparse.BooleanOptionalAction, type=bool, default=False, help="use 32-bit weights instead of faster 16-bit weights", ) parser.add_argument( "--yes", "-y", dest="yes_to_all", action="store_true", help='answer "yes" to all prompts', ) parser.add_argument( "--default_only", action="store_true", help="only install the default model", ) parser.add_argument( "--config_file", "-c", dest="config_file", type=str, default=None, help="path to configuration file to create", ) parser.add_argument( "--root_dir", dest="root", type=str, default=None, help="path to root of install directory", ) opt = parser.parse_args() # setting a global here Globals.root = os.path.expanduser(get_root(opt.root) or "") if not global_config_dir().exists(): print( ">> Your InvokeAI root directory is not set up. Calling invokeai-configure." ) from invokeai.frontend.install import invokeai_configure invokeai_configure() sys.exit(0) try: select_and_download_models(opt) except AssertionError as e: print(str(e)) sys.exit(-1) except KeyboardInterrupt: print("\nGoodbye! Come back soon.") except widget.NotEnoughSpaceForWidget as e: if str(e).startswith("Height of 1 allocated"): print( "** Insufficient vertical space for the interface. Please make your window taller and try again" ) elif str(e).startswith("addwstr"): print( "** Insufficient horizontal space for the interface. Please make your window wider and try again." ) # ------------------------------------- if __name__ == "__main__": main()