import torch.nn as nn def _conv_forward_asymmetric(self, input, weight, bias): """ Patch for Conv2d._conv_forward that supports asymmetric padding """ working = nn.functional.pad( input, self.asymmetric_padding["x"], mode=self.asymmetric_padding_mode["x"] ) working = nn.functional.pad( working, self.asymmetric_padding["y"], mode=self.asymmetric_padding_mode["y"] ) return nn.functional.conv2d( working, weight, bias, self.stride, nn.modules.utils._pair(0), self.dilation, self.groups, ) def configure_model_padding(model, seamless, seamless_axes): """ Modifies the 2D convolution layers to use a circular padding mode based on the `seamless` and `seamless_axes` options. """ # TODO: get an explicit interface for this in diffusers: https://github.com/huggingface/diffusers/issues/556 for m in model.modules(): if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)): if seamless: m.asymmetric_padding_mode = {} m.asymmetric_padding = {} m.asymmetric_padding_mode["x"] = ( "circular" if ("x" in seamless_axes) else "constant" ) m.asymmetric_padding["x"] = ( m._reversed_padding_repeated_twice[0], m._reversed_padding_repeated_twice[1], 0, 0, ) m.asymmetric_padding_mode["y"] = ( "circular" if ("y" in seamless_axes) else "constant" ) m.asymmetric_padding["y"] = ( 0, 0, m._reversed_padding_repeated_twice[2], m._reversed_padding_repeated_twice[3], ) m._conv_forward = _conv_forward_asymmetric.__get__(m, nn.Conv2d) else: m._conv_forward = nn.Conv2d._conv_forward.__get__(m, nn.Conv2d) if hasattr(m, "asymmetric_padding_mode"): del m.asymmetric_padding_mode if hasattr(m, "asymmetric_padding"): del m.asymmetric_padding