from typing import Union from pydantic import BaseModel, ConfigDict, Field, field_validator, model_validator from invokeai.app.invocations.baseinvocation import ( BaseInvocation, BaseInvocationOutput, InvocationContext, invocation, invocation_output, ) from invokeai.app.invocations.controlnet_image_processors import CONTROLNET_RESIZE_VALUES from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField from invokeai.app.invocations.primitives import ImageField from invokeai.app.invocations.util import validate_begin_end_step, validate_weights from invokeai.backend.model_management.models.base import BaseModelType class T2IAdapterModelField(BaseModel): model_name: str = Field(description="Name of the T2I-Adapter model") base_model: BaseModelType = Field(description="Base model") model_config = ConfigDict(protected_namespaces=()) class T2IAdapterField(BaseModel): image: ImageField = Field(description="The T2I-Adapter image prompt.") t2i_adapter_model: T2IAdapterModelField = Field(description="The T2I-Adapter model to use.") weight: Union[float, list[float]] = Field(default=1, description="The weight given to the T2I-Adapter") begin_step_percent: float = Field( default=0, ge=0, le=1, description="When the T2I-Adapter is first applied (% of total steps)" ) end_step_percent: float = Field( default=1, ge=0, le=1, description="When the T2I-Adapter is last applied (% of total steps)" ) resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use") @field_validator("weight") @classmethod def validate_ip_adapter_weight(cls, v): validate_weights(v) return v @model_validator(mode="after") def validate_begin_end_step_percent(self): validate_begin_end_step(self.begin_step_percent, self.end_step_percent) return self @invocation_output("t2i_adapter_output") class T2IAdapterOutput(BaseInvocationOutput): t2i_adapter: T2IAdapterField = OutputField(description=FieldDescriptions.t2i_adapter, title="T2I Adapter") @invocation( "t2i_adapter", title="T2I-Adapter", tags=["t2i_adapter", "control"], category="t2i_adapter", version="1.0.1" ) class T2IAdapterInvocation(BaseInvocation): """Collects T2I-Adapter info to pass to other nodes.""" # Inputs image: ImageField = InputField(description="The IP-Adapter image prompt.") t2i_adapter_model: T2IAdapterModelField = InputField( description="The T2I-Adapter model.", title="T2I-Adapter Model", input=Input.Direct, ui_order=-1, ) weight: Union[float, list[float]] = InputField( default=1, ge=0, description="The weight given to the T2I-Adapter", title="Weight" ) begin_step_percent: float = InputField( default=0, ge=0, le=1, description="When the T2I-Adapter is first applied (% of total steps)" ) end_step_percent: float = InputField( default=1, ge=0, le=1, description="When the T2I-Adapter is last applied (% of total steps)" ) resize_mode: CONTROLNET_RESIZE_VALUES = InputField( default="just_resize", description="The resize mode applied to the T2I-Adapter input image so that it matches the target output size.", ) @field_validator("weight") @classmethod def validate_ip_adapter_weight(cls, v): validate_weights(v) return v @model_validator(mode="after") def validate_begin_end_step_percent(self): validate_begin_end_step(self.begin_step_percent, self.end_step_percent) return self def invoke(self, context: InvocationContext) -> T2IAdapterOutput: return T2IAdapterOutput( t2i_adapter=T2IAdapterField( image=self.image, t2i_adapter_model=self.t2i_adapter_model, weight=self.weight, begin_step_percent=self.begin_step_percent, end_step_percent=self.end_step_percent, resize_mode=self.resize_mode, ) )