InvokeAI/invokeai/backend/model_manager/load/model_util.py

162 lines
6.0 KiB
Python

# Copyright (c) 2024 The InvokeAI Development Team
"""Various utility functions needed by the loader and caching system."""
import json
import logging
from pathlib import Path
from typing import Optional
import torch
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from transformers import CLIPTokenizer, T5Tokenizer, T5TokenizerFast
from invokeai.backend.image_util.depth_anything.depth_anything_pipeline import DepthAnythingPipeline
from invokeai.backend.image_util.grounding_dino.grounding_dino_pipeline import GroundingDinoPipeline
from invokeai.backend.image_util.segment_anything.segment_anything_pipeline import SegmentAnythingPipeline
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_manager.config import AnyModel
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
from invokeai.backend.spandrel_image_to_image_model import SpandrelImageToImageModel
from invokeai.backend.textual_inversion import TextualInversionModelRaw
def calc_model_size_by_data(logger: logging.Logger, model: AnyModel) -> int:
"""Get size of a model in memory in bytes."""
# TODO(ryand): We should create a CacheableModel interface for all models, and move the size calculations down to
# the models themselves.
if isinstance(model, DiffusionPipeline):
return _calc_pipeline_by_data(model)
elif isinstance(model, torch.nn.Module):
return calc_module_size(model)
elif isinstance(model, IAIOnnxRuntimeModel):
return _calc_onnx_model_by_data(model)
elif isinstance(model, SchedulerMixin):
return 0
elif isinstance(model, CLIPTokenizer):
# TODO(ryand): Accurately calculate the tokenizer's size. It's small enough that it shouldn't matter for now.
return 0
elif isinstance(
model,
(
TextualInversionModelRaw,
IPAdapter,
LoRAModelRaw,
SpandrelImageToImageModel,
GroundingDinoPipeline,
SegmentAnythingPipeline,
DepthAnythingPipeline,
),
):
return model.calc_size()
elif isinstance(
model,
(
T5TokenizerFast,
T5Tokenizer,
),
):
# HACK(ryand): len(model) just returns the vocabulary size, so this is blatantly wrong. It should be small
# relative to the text encoder that it's used with, so shouldn't matter too much, but we should fix this at some
# point.
return len(model)
else:
# TODO(ryand): Promote this from a log to an exception once we are confident that we are handling all of the
# supported model types.
logger.warning(
f"Failed to calculate model size for unexpected model type: {type(model)}. The model will be treated as "
"having size 0."
)
return 0
def _calc_pipeline_by_data(pipeline: DiffusionPipeline) -> int:
res = 0
assert hasattr(pipeline, "components")
for submodel_key in pipeline.components.keys():
submodel = getattr(pipeline, submodel_key)
if submodel is not None and isinstance(submodel, torch.nn.Module):
res += calc_module_size(submodel)
return res
def calc_module_size(model: torch.nn.Module) -> int:
"""Calculate the size (in bytes) of a torch.nn.Module."""
mem_params = sum([param.nelement() * param.element_size() for param in model.parameters()])
mem_bufs = sum([buf.nelement() * buf.element_size() for buf in model.buffers()])
mem: int = mem_params + mem_bufs # in bytes
return mem
def _calc_onnx_model_by_data(model: IAIOnnxRuntimeModel) -> int:
tensor_size = model.tensors.size() * 2 # The session doubles this
mem = tensor_size # in bytes
return mem
def calc_model_size_by_fs(model_path: Path, subfolder: Optional[str] = None, variant: Optional[str] = None) -> int:
"""Estimate the size of a model on disk in bytes."""
if model_path.is_file():
return model_path.stat().st_size
if subfolder is not None:
model_path = model_path / subfolder
# this can happen when, for example, the safety checker is not downloaded.
if not model_path.exists():
return 0
all_files = [f for f in model_path.iterdir() if (model_path / f).is_file()]
fp16_files = {f for f in all_files if ".fp16." in f.name or ".fp16-" in f.name}
bit8_files = {f for f in all_files if ".8bit." in f.name or ".8bit-" in f.name}
other_files = set(all_files) - fp16_files - bit8_files
if not variant: # ModelRepoVariant.DEFAULT evaluates to empty string for compatability with HF
files = other_files
elif variant == "fp16":
files = fp16_files
elif variant == "8bit":
files = bit8_files
else:
raise NotImplementedError(f"Unknown variant: {variant}")
# try read from index if exists
index_postfix = ".index.json"
if variant is not None:
index_postfix = f".index.{variant}.json"
for file in files:
if not file.name.endswith(index_postfix):
continue
try:
with open(model_path / file, "r") as f:
index_data = json.loads(f.read())
return int(index_data["metadata"]["total_size"])
except Exception:
pass
# calculate files size if there is no index file
formats = [
(".safetensors",), # safetensors
(".bin",), # torch
(".onnx", ".pb"), # onnx
(".msgpack",), # flax
(".ckpt",), # tf
(".h5",), # tf2
]
for file_format in formats:
model_files = [f for f in files if f.suffix in file_format]
if len(model_files) == 0:
continue
model_size = 0
for model_file in model_files:
file_stats = (model_path / model_file).stat()
model_size += file_stats.st_size
return model_size
return 0 # scheduler/feature_extractor/tokenizer - models without loading to gpu