InvokeAI/invokeai/backend/util/test_utils.py
psychedelicious afd9ae7712 tidy(mm): remove convenience methods from high level model manager service
These were added as a hold-me-over for the nodes API changes, no longer needed. A followup commit will fix the nodes API to not rely on these.
2024-03-07 10:56:59 +11:00

64 lines
2.5 KiB
Python

import contextlib
from pathlib import Path
from typing import Optional, Union
import pytest
import torch
from invokeai.app.services.model_manager import ModelManagerServiceBase
from invokeai.app.services.model_records import UnknownModelException
from invokeai.backend.model_manager import BaseModelType, LoadedModel, ModelType, SubModelType
@pytest.fixture(scope="session")
def torch_device():
return "cuda" if torch.cuda.is_available() else "cpu"
def install_and_load_model(
model_manager: ModelManagerServiceBase,
model_path_id_or_url: Union[str, Path],
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
submodel_type: Optional[SubModelType] = None,
) -> LoadedModel:
"""Install a model if it is not already installed, then get the LoadedModel for that model.
This is intended as a utility function for tests.
Args:
mm2_model_manager (ModelManagerServiceBase): The model manager
model_path_id_or_url (Union[str, Path]): The path, HF ID, URL, etc. where the model can be installed from if it
is not already installed.
model_name (str): The model name, forwarded to ModelManager.get_model(...).
base_model (BaseModelType): The base model, forwarded to ModelManager.get_model(...).
model_type (ModelType): The model type, forwarded to ModelManager.get_model(...).
submodel_type (Optional[SubModelType]): The submodel type, forwarded to ModelManager.get_model(...).
Returns:
LoadedModelInfo
"""
# If the requested model is already installed, return its LoadedModel
with contextlib.suppress(UnknownModelException):
# TODO: Replace with wrapper call
configs = model_manager.store.search_by_attr(
model_name=model_name, base_model=base_model, model_type=model_type
)
loaded_model: LoadedModel = model_manager.load.load_model(configs[0])
return loaded_model
# Install the requested model.
job = model_manager.install.heuristic_import(model_path_id_or_url)
model_manager.install.wait_for_job(job, timeout=10)
assert job.complete
try:
loaded_model = model_manager.load.load_model(job.config_out)
return loaded_model
except UnknownModelException as e:
raise Exception(
"Failed to get model info after installing it. There could be a mismatch between the requested model and"
f" the installation id ('{model_path_id_or_url}'). Error: {e}"
)