mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
044d4c107a
All invocation metadata (type, title, tags and category) are now defined in decorators. The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation. Category is a new invocation metadata, but it is not used by the frontend just yet. - `@invocation()` decorator for invocations ```py @invocation( "sdxl_compel_prompt", title="SDXL Prompt", tags=["sdxl", "compel", "prompt"], category="conditioning", ) class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase): ... ``` - `@invocation_output()` decorator for invocation outputs ```py @invocation_output("clip_skip_output") class ClipSkipInvocationOutput(BaseInvocationOutput): ... ``` - update invocation docs - add category to decorator - regen frontend types
78 lines
3.2 KiB
Python
78 lines
3.2 KiB
Python
from os.path import exists
|
|
from typing import Optional, Union
|
|
|
|
import numpy as np
|
|
from dynamicprompts.generators import CombinatorialPromptGenerator, RandomPromptGenerator
|
|
from pydantic import validator
|
|
|
|
from invokeai.app.invocations.primitives import StringCollectionOutput
|
|
|
|
from .baseinvocation import BaseInvocation, InputField, InvocationContext, UIComponent, invocation
|
|
|
|
|
|
@invocation("dynamic_prompt", title="Dynamic Prompt", tags=["prompt", "collection"], category="prompt")
|
|
class DynamicPromptInvocation(BaseInvocation):
|
|
"""Parses a prompt using adieyal/dynamicprompts' random or combinatorial generator"""
|
|
|
|
prompt: str = InputField(description="The prompt to parse with dynamicprompts", ui_component=UIComponent.Textarea)
|
|
max_prompts: int = InputField(default=1, description="The number of prompts to generate")
|
|
combinatorial: bool = InputField(default=False, description="Whether to use the combinatorial generator")
|
|
|
|
def invoke(self, context: InvocationContext) -> StringCollectionOutput:
|
|
if self.combinatorial:
|
|
generator = CombinatorialPromptGenerator()
|
|
prompts = generator.generate(self.prompt, max_prompts=self.max_prompts)
|
|
else:
|
|
generator = RandomPromptGenerator()
|
|
prompts = generator.generate(self.prompt, num_images=self.max_prompts)
|
|
|
|
return StringCollectionOutput(collection=prompts)
|
|
|
|
|
|
@invocation("prompt_from_file", title="Prompts from File", tags=["prompt", "file"], category="prompt")
|
|
class PromptsFromFileInvocation(BaseInvocation):
|
|
"""Loads prompts from a text file"""
|
|
|
|
file_path: str = InputField(description="Path to prompt text file")
|
|
pre_prompt: Optional[str] = InputField(
|
|
default=None, description="String to prepend to each prompt", ui_component=UIComponent.Textarea
|
|
)
|
|
post_prompt: Optional[str] = InputField(
|
|
default=None, description="String to append to each prompt", ui_component=UIComponent.Textarea
|
|
)
|
|
start_line: int = InputField(default=1, ge=1, description="Line in the file to start start from")
|
|
max_prompts: int = InputField(default=1, ge=0, description="Max lines to read from file (0=all)")
|
|
|
|
@validator("file_path")
|
|
def file_path_exists(cls, v):
|
|
if not exists(v):
|
|
raise ValueError(FileNotFoundError)
|
|
return v
|
|
|
|
def promptsFromFile(
|
|
self,
|
|
file_path: str,
|
|
pre_prompt: Union[str, None],
|
|
post_prompt: Union[str, None],
|
|
start_line: int,
|
|
max_prompts: int,
|
|
):
|
|
prompts = []
|
|
start_line -= 1
|
|
end_line = start_line + max_prompts
|
|
if max_prompts <= 0:
|
|
end_line = np.iinfo(np.int32).max
|
|
with open(file_path) as f:
|
|
for i, line in enumerate(f):
|
|
if i >= start_line and i < end_line:
|
|
prompts.append((pre_prompt or "") + line.strip() + (post_prompt or ""))
|
|
if i >= end_line:
|
|
break
|
|
return prompts
|
|
|
|
def invoke(self, context: InvocationContext) -> StringCollectionOutput:
|
|
prompts = self.promptsFromFile(
|
|
self.file_path, self.pre_prompt, self.post_prompt, self.start_line, self.max_prompts
|
|
)
|
|
return StringCollectionOutput(collection=prompts)
|