mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
04a5bc938e
with so much slicing and dicing of pipeline methods to stitch them together
124 lines
4.8 KiB
Python
124 lines
4.8 KiB
Python
'''
|
|
ldm.invoke.generator.txt2img inherits from ldm.invoke.generator
|
|
'''
|
|
|
|
import math
|
|
from typing import Callable, Optional
|
|
|
|
import torch
|
|
|
|
from ldm.invoke.generator.base import Generator
|
|
from ldm.invoke.generator.diffusers_pipeline import trim_to_multiple_of, StableDiffusionGeneratorPipeline
|
|
|
|
|
|
class Txt2Img2Img(Generator):
|
|
def __init__(self, model, precision):
|
|
super().__init__(model, precision)
|
|
self.init_latent = None # for get_noise()
|
|
|
|
def get_make_image(self, prompt:str, sampler, steps:int, cfg_scale:float, ddim_eta,
|
|
conditioning, width:int, height:int, strength:float,
|
|
step_callback:Optional[Callable]=None, **kwargs):
|
|
"""
|
|
Returns a function returning an image derived from the prompt and the initial image
|
|
Return value depends on the seed at the time you call it
|
|
kwargs are 'width' and 'height'
|
|
"""
|
|
uc, c, extra_conditioning_info = conditioning
|
|
scale_dim = min(width, height)
|
|
scale = 512 / scale_dim
|
|
|
|
init_width, init_height = trim_to_multiple_of(scale * width, scale * height)
|
|
|
|
# noinspection PyTypeChecker
|
|
pipeline: StableDiffusionGeneratorPipeline = self.model
|
|
pipeline.scheduler = sampler
|
|
|
|
def make_image(x_T):
|
|
|
|
pipeline_output = pipeline.latents_from_embeddings(
|
|
latents=x_T,
|
|
num_inference_steps=steps,
|
|
text_embeddings=c,
|
|
unconditioned_embeddings=uc,
|
|
guidance_scale=cfg_scale,
|
|
callback=step_callback,
|
|
extra_conditioning_info=extra_conditioning_info,
|
|
# TODO: eta = ddim_eta,
|
|
# TODO: threshold = threshold,
|
|
)
|
|
|
|
first_pass_latent_output = pipeline_output.latents
|
|
|
|
print(
|
|
f"\n>> Interpolating from {init_width}x{init_height} to {width}x{height} using DDIM sampling"
|
|
)
|
|
|
|
# resizing
|
|
resized_latents = torch.nn.functional.interpolate(
|
|
first_pass_latent_output,
|
|
size=(height // self.downsampling_factor, width // self.downsampling_factor),
|
|
mode="bilinear"
|
|
)
|
|
|
|
pipeline_output = pipeline.img2img_from_latents_and_embeddings(
|
|
resized_latents,
|
|
num_inference_steps=steps,
|
|
text_embeddings=c,
|
|
unconditioned_embeddings=uc,
|
|
guidance_scale=cfg_scale, strength=strength,
|
|
extra_conditioning_info=extra_conditioning_info,
|
|
noise_func=self.get_noise_like,
|
|
callback=step_callback)
|
|
|
|
return pipeline.numpy_to_pil(pipeline_output.images)[0]
|
|
|
|
|
|
# FIXME: do we really need something entirely different for the inpainting model?
|
|
|
|
# in the case of the inpainting model being loaded, the trick of
|
|
# providing an interpolated latent doesn't work, so we transiently
|
|
# create a 512x512 PIL image, upscale it, and run the inpainting
|
|
# over it in img2img mode. Because the inpaing model is so conservative
|
|
# it doesn't change the image (much)
|
|
|
|
return make_image
|
|
|
|
def get_noise_like(self, like: torch.Tensor):
|
|
device = like.device
|
|
if device.type == 'mps':
|
|
x = torch.randn_like(like, device='cpu').to(device)
|
|
else:
|
|
x = torch.randn_like(like, device=device)
|
|
if self.perlin > 0.0:
|
|
shape = like.shape
|
|
x = (1-self.perlin)*x + self.perlin*self.get_perlin_noise(shape[3], shape[2])
|
|
return x
|
|
|
|
# returns a tensor filled with random numbers from a normal distribution
|
|
def get_noise(self,width,height,scale = True):
|
|
# print(f"Get noise: {width}x{height}")
|
|
if scale:
|
|
trained_square = 512 * 512
|
|
actual_square = width * height
|
|
scale = math.sqrt(trained_square / actual_square)
|
|
scaled_width = math.ceil(scale * width / 64) * 64
|
|
scaled_height = math.ceil(scale * height / 64) * 64
|
|
else:
|
|
scaled_width = width
|
|
scaled_height = height
|
|
|
|
device = self.model.device
|
|
if self.use_mps_noise or device.type == 'mps':
|
|
return torch.randn([1,
|
|
self.latent_channels,
|
|
scaled_height // self.downsampling_factor,
|
|
scaled_width // self.downsampling_factor],
|
|
device='cpu').to(device)
|
|
else:
|
|
return torch.randn([1,
|
|
self.latent_channels,
|
|
scaled_height // self.downsampling_factor,
|
|
scaled_width // self.downsampling_factor],
|
|
device=device)
|