mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
329 lines
9.7 KiB
Python
329 lines
9.7 KiB
Python
# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Development Team
|
|
"""
|
|
Configuration definitions for image generation models.
|
|
|
|
Typical usage:
|
|
|
|
from invokeai.backend.model_manager import ModelConfigFactory
|
|
raw = dict(path='models/sd-1/main/foo.ckpt',
|
|
name='foo',
|
|
base='sd-1',
|
|
type='main',
|
|
config='configs/stable-diffusion/v1-inference.yaml',
|
|
variant='normal',
|
|
format='checkpoint'
|
|
)
|
|
config = ModelConfigFactory.make_config(raw)
|
|
print(config.name)
|
|
|
|
Validation errors will raise an InvalidModelConfigException error.
|
|
|
|
"""
|
|
from enum import Enum
|
|
from typing import Literal, Optional, Type, Union
|
|
|
|
from pydantic import BaseModel, ConfigDict, Field, ValidationError
|
|
|
|
|
|
class InvalidModelConfigException(Exception):
|
|
"""Exception for when config parser doesn't recognized this combination of model type and format."""
|
|
|
|
|
|
class BaseModelType(str, Enum):
|
|
"""Base model type."""
|
|
|
|
Any = "any"
|
|
StableDiffusion1 = "sd-1"
|
|
StableDiffusion2 = "sd-2"
|
|
StableDiffusionXL = "sdxl"
|
|
StableDiffusionXLRefiner = "sdxl-refiner"
|
|
# Kandinsky2_1 = "kandinsky-2.1"
|
|
|
|
|
|
class ModelType(str, Enum):
|
|
"""Model type."""
|
|
|
|
ONNX = "onnx"
|
|
Main = "main"
|
|
Vae = "vae"
|
|
Lora = "lora"
|
|
ControlNet = "controlnet" # used by model_probe
|
|
TextualInversion = "embedding"
|
|
IPAdapter = "ip_adapter"
|
|
CLIPVision = "clip_vision"
|
|
T2IAdapter = "t2i_adapter"
|
|
|
|
|
|
class SubModelType(str, Enum):
|
|
"""Submodel type."""
|
|
|
|
UNet = "unet"
|
|
TextEncoder = "text_encoder"
|
|
TextEncoder2 = "text_encoder_2"
|
|
Tokenizer = "tokenizer"
|
|
Tokenizer2 = "tokenizer_2"
|
|
Vae = "vae"
|
|
VaeDecoder = "vae_decoder"
|
|
VaeEncoder = "vae_encoder"
|
|
Scheduler = "scheduler"
|
|
SafetyChecker = "safety_checker"
|
|
|
|
|
|
class ModelVariantType(str, Enum):
|
|
"""Variant type."""
|
|
|
|
Normal = "normal"
|
|
Inpaint = "inpaint"
|
|
Depth = "depth"
|
|
|
|
|
|
class ModelFormat(str, Enum):
|
|
"""Storage format of model."""
|
|
|
|
Diffusers = "diffusers"
|
|
Checkpoint = "checkpoint"
|
|
Lycoris = "lycoris"
|
|
Onnx = "onnx"
|
|
Olive = "olive"
|
|
EmbeddingFile = "embedding_file"
|
|
EmbeddingFolder = "embedding_folder"
|
|
InvokeAI = "invokeai"
|
|
|
|
|
|
class SchedulerPredictionType(str, Enum):
|
|
"""Scheduler prediction type."""
|
|
|
|
Epsilon = "epsilon"
|
|
VPrediction = "v_prediction"
|
|
Sample = "sample"
|
|
|
|
|
|
class ModelConfigBase(BaseModel):
|
|
"""Base class for model configuration information."""
|
|
|
|
path: str
|
|
name: str
|
|
base: BaseModelType
|
|
type: ModelType
|
|
format: ModelFormat
|
|
key: str = Field(description="unique key for model", default="<NOKEY>")
|
|
original_hash: Optional[str] = Field(
|
|
description="original fasthash of model contents", default=None
|
|
) # this is assigned at install time and will not change
|
|
current_hash: Optional[str] = Field(
|
|
description="current fasthash of model contents", default=None
|
|
) # if model is converted or otherwise modified, this will hold updated hash
|
|
description: Optional[str] = Field(None)
|
|
source: Optional[str] = Field(description="Model download source (URL or repo_id)", default=None)
|
|
|
|
model_config = ConfigDict(
|
|
use_enum_values=False,
|
|
validate_assignment=True,
|
|
)
|
|
|
|
def update(self, attributes: dict):
|
|
"""Update the object with fields in dict."""
|
|
for key, value in attributes.items():
|
|
setattr(self, key, value) # may raise a validation error
|
|
|
|
|
|
class _CheckpointConfig(ModelConfigBase):
|
|
"""Model config for checkpoint-style models."""
|
|
|
|
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
|
|
config: str = Field(description="path to the checkpoint model config file")
|
|
|
|
|
|
class _DiffusersConfig(ModelConfigBase):
|
|
"""Model config for diffusers-style models."""
|
|
|
|
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
|
|
|
|
|
|
class LoRAConfig(ModelConfigBase):
|
|
"""Model config for LoRA/Lycoris models."""
|
|
|
|
format: Literal[ModelFormat.Lycoris, ModelFormat.Diffusers]
|
|
|
|
|
|
class VaeCheckpointConfig(ModelConfigBase):
|
|
"""Model config for standalone VAE models."""
|
|
|
|
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
|
|
|
|
|
|
class VaeDiffusersConfig(ModelConfigBase):
|
|
"""Model config for standalone VAE models (diffusers version)."""
|
|
|
|
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
|
|
|
|
|
|
class ControlNetDiffusersConfig(_DiffusersConfig):
|
|
"""Model config for ControlNet models (diffusers version)."""
|
|
|
|
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
|
|
|
|
|
|
class ControlNetCheckpointConfig(_CheckpointConfig):
|
|
"""Model config for ControlNet models (diffusers version)."""
|
|
|
|
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
|
|
|
|
|
|
class TextualInversionConfig(ModelConfigBase):
|
|
"""Model config for textual inversion embeddings."""
|
|
|
|
format: Literal[ModelFormat.EmbeddingFile, ModelFormat.EmbeddingFolder]
|
|
|
|
|
|
class _MainConfig(ModelConfigBase):
|
|
"""Model config for main models."""
|
|
|
|
vae: Optional[str] = Field(default=None)
|
|
variant: ModelVariantType = ModelVariantType.Normal
|
|
ztsnr_training: bool = False
|
|
|
|
|
|
class MainCheckpointConfig(_CheckpointConfig, _MainConfig):
|
|
"""Model config for main checkpoint models."""
|
|
|
|
# Note that we do not need prediction_type or upcast_attention here
|
|
# because they are provided in the checkpoint's own config file.
|
|
|
|
|
|
class MainDiffusersConfig(_DiffusersConfig, _MainConfig):
|
|
"""Model config for main diffusers models."""
|
|
|
|
prediction_type: SchedulerPredictionType = SchedulerPredictionType.Epsilon
|
|
upcast_attention: bool = False
|
|
|
|
|
|
class ONNXSD1Config(_MainConfig):
|
|
"""Model config for ONNX format models based on sd-1."""
|
|
|
|
format: Literal[ModelFormat.Onnx, ModelFormat.Olive]
|
|
prediction_type: SchedulerPredictionType = SchedulerPredictionType.Epsilon
|
|
upcast_attention: bool = False
|
|
|
|
|
|
class ONNXSD2Config(_MainConfig):
|
|
"""Model config for ONNX format models based on sd-2."""
|
|
|
|
format: Literal[ModelFormat.Onnx, ModelFormat.Olive]
|
|
# No yaml config file for ONNX, so these are part of config
|
|
prediction_type: SchedulerPredictionType = SchedulerPredictionType.VPrediction
|
|
upcast_attention: bool = True
|
|
|
|
|
|
class IPAdapterConfig(ModelConfigBase):
|
|
"""Model config for IP Adaptor format models."""
|
|
|
|
format: Literal[ModelFormat.InvokeAI]
|
|
|
|
|
|
class CLIPVisionDiffusersConfig(ModelConfigBase):
|
|
"""Model config for ClipVision."""
|
|
|
|
format: Literal[ModelFormat.Diffusers]
|
|
|
|
|
|
class T2IConfig(ModelConfigBase):
|
|
"""Model config for T2I."""
|
|
|
|
format: Literal[ModelFormat.Diffusers]
|
|
|
|
|
|
AnyModelConfig = Union[
|
|
MainCheckpointConfig,
|
|
MainDiffusersConfig,
|
|
LoRAConfig,
|
|
TextualInversionConfig,
|
|
ONNXSD1Config,
|
|
ONNXSD2Config,
|
|
VaeCheckpointConfig,
|
|
VaeDiffusersConfig,
|
|
ControlNetDiffusersConfig,
|
|
ControlNetCheckpointConfig,
|
|
IPAdapterConfig,
|
|
CLIPVisionDiffusersConfig,
|
|
T2IConfig,
|
|
]
|
|
|
|
|
|
class ModelConfigFactory(object):
|
|
"""Class for parsing config dicts into StableDiffusion Config obects."""
|
|
|
|
_class_map: dict = {
|
|
ModelFormat.Checkpoint: {
|
|
ModelType.Main: MainCheckpointConfig,
|
|
ModelType.Vae: VaeCheckpointConfig,
|
|
},
|
|
ModelFormat.Diffusers: {
|
|
ModelType.Main: MainDiffusersConfig,
|
|
ModelType.Lora: LoRAConfig,
|
|
ModelType.Vae: VaeDiffusersConfig,
|
|
ModelType.ControlNet: ControlNetDiffusersConfig,
|
|
ModelType.CLIPVision: CLIPVisionDiffusersConfig,
|
|
},
|
|
ModelFormat.Lycoris: {
|
|
ModelType.Lora: LoRAConfig,
|
|
},
|
|
ModelFormat.Onnx: {
|
|
ModelType.ONNX: {
|
|
BaseModelType.StableDiffusion1: ONNXSD1Config,
|
|
BaseModelType.StableDiffusion2: ONNXSD2Config,
|
|
},
|
|
},
|
|
ModelFormat.Olive: {
|
|
ModelType.ONNX: {
|
|
BaseModelType.StableDiffusion1: ONNXSD1Config,
|
|
BaseModelType.StableDiffusion2: ONNXSD2Config,
|
|
},
|
|
},
|
|
ModelFormat.EmbeddingFile: {
|
|
ModelType.TextualInversion: TextualInversionConfig,
|
|
},
|
|
ModelFormat.EmbeddingFolder: {
|
|
ModelType.TextualInversion: TextualInversionConfig,
|
|
},
|
|
ModelFormat.InvokeAI: {
|
|
ModelType.IPAdapter: IPAdapterConfig,
|
|
},
|
|
}
|
|
|
|
@classmethod
|
|
def make_config(
|
|
cls,
|
|
model_data: Union[dict, ModelConfigBase],
|
|
key: Optional[str] = None,
|
|
dest_class: Optional[Type] = None,
|
|
) -> AnyModelConfig:
|
|
"""
|
|
Return the appropriate config object from raw dict values.
|
|
|
|
:param model_data: A raw dict corresponding the obect fields to be
|
|
parsed into a ModelConfigBase obect (or descendent), or a ModelConfigBase
|
|
object, which will be passed through unchanged.
|
|
:param dest_class: The config class to be returned. If not provided, will
|
|
be selected automatically.
|
|
"""
|
|
if isinstance(model_data, ModelConfigBase):
|
|
if key:
|
|
model_data.key = key
|
|
return model_data
|
|
try:
|
|
format = model_data.get("format")
|
|
type = model_data.get("type")
|
|
model_base = model_data.get("base")
|
|
class_to_return = dest_class or cls._class_map[format][type]
|
|
if isinstance(class_to_return, dict): # additional level allowed
|
|
class_to_return = class_to_return[model_base]
|
|
model = class_to_return.model_validate(model_data)
|
|
if key:
|
|
model.key = key # ensure consistency
|
|
return model
|
|
except KeyError as exc:
|
|
raise InvalidModelConfigException(f"Unknown combination of format '{format}' and type '{type}'") from exc
|
|
except ValidationError as exc:
|
|
raise InvalidModelConfigException(f"Invalid model configuration passed: {str(exc)}") from exc
|