mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
769 lines
28 KiB
Python
769 lines
28 KiB
Python
import math
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from functools import partial
|
|
import clip
|
|
from einops import rearrange, repeat
|
|
from transformers import CLIPTokenizer, CLIPTextModel
|
|
import kornia
|
|
from ldm.invoke.devices import choose_torch_device
|
|
|
|
from ldm.modules.x_transformer import (
|
|
Encoder,
|
|
TransformerWrapper,
|
|
) # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
|
|
|
|
|
|
def _expand_mask(mask, dtype, tgt_len=None):
|
|
"""
|
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
|
"""
|
|
bsz, src_len = mask.size()
|
|
tgt_len = tgt_len if tgt_len is not None else src_len
|
|
|
|
expanded_mask = (
|
|
mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
|
)
|
|
|
|
inverted_mask = 1.0 - expanded_mask
|
|
|
|
return inverted_mask.masked_fill(
|
|
inverted_mask.to(torch.bool), torch.finfo(dtype).min
|
|
)
|
|
|
|
|
|
def _build_causal_attention_mask(bsz, seq_len, dtype):
|
|
# lazily create causal attention mask, with full attention between the vision tokens
|
|
# pytorch uses additive attention mask; fill with -inf
|
|
mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype)
|
|
mask.fill_(torch.tensor(torch.finfo(dtype).min))
|
|
mask.triu_(1) # zero out the lower diagonal
|
|
mask = mask.unsqueeze(1) # expand mask
|
|
return mask
|
|
|
|
|
|
class AbstractEncoder(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def encode(self, *args, **kwargs):
|
|
raise NotImplementedError
|
|
|
|
|
|
class ClassEmbedder(nn.Module):
|
|
def __init__(self, embed_dim, n_classes=1000, key='class'):
|
|
super().__init__()
|
|
self.key = key
|
|
self.embedding = nn.Embedding(n_classes, embed_dim)
|
|
|
|
def forward(self, batch, key=None):
|
|
if key is None:
|
|
key = self.key
|
|
# this is for use in crossattn
|
|
c = batch[key][:, None]
|
|
c = self.embedding(c)
|
|
return c
|
|
|
|
|
|
class TransformerEmbedder(AbstractEncoder):
|
|
"""Some transformer encoder layers"""
|
|
|
|
def __init__(
|
|
self,
|
|
n_embed,
|
|
n_layer,
|
|
vocab_size,
|
|
max_seq_len=77,
|
|
device=choose_torch_device(),
|
|
):
|
|
super().__init__()
|
|
self.device = device
|
|
self.transformer = TransformerWrapper(
|
|
num_tokens=vocab_size,
|
|
max_seq_len=max_seq_len,
|
|
attn_layers=Encoder(dim=n_embed, depth=n_layer),
|
|
)
|
|
|
|
def forward(self, tokens):
|
|
tokens = tokens.to(self.device) # meh
|
|
z = self.transformer(tokens, return_embeddings=True)
|
|
return z
|
|
|
|
def encode(self, x):
|
|
return self(x)
|
|
|
|
|
|
class BERTTokenizer(AbstractEncoder):
|
|
"""Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
|
|
|
|
def __init__(
|
|
self, device=choose_torch_device(), vq_interface=True, max_length=77
|
|
):
|
|
super().__init__()
|
|
from transformers import (
|
|
BertTokenizerFast,
|
|
) # TODO: add to reuquirements
|
|
|
|
# Modified to allow to run on non-internet connected compute nodes.
|
|
# Model needs to be loaded into cache from an internet-connected machine
|
|
# by running:
|
|
# from transformers import BertTokenizerFast
|
|
# BertTokenizerFast.from_pretrained("bert-base-uncased")
|
|
try:
|
|
self.tokenizer = BertTokenizerFast.from_pretrained(
|
|
'bert-base-uncased', local_files_only=True
|
|
)
|
|
except OSError:
|
|
raise SystemExit(
|
|
"* Couldn't load Bert tokenizer files. Try running scripts/preload_models.py from an internet-conected machine."
|
|
)
|
|
self.device = device
|
|
self.vq_interface = vq_interface
|
|
self.max_length = max_length
|
|
|
|
def forward(self, text):
|
|
batch_encoding = self.tokenizer(
|
|
text,
|
|
truncation=True,
|
|
max_length=self.max_length,
|
|
return_length=True,
|
|
return_overflowing_tokens=False,
|
|
padding='max_length',
|
|
return_tensors='pt',
|
|
)
|
|
tokens = batch_encoding['input_ids'].to(self.device)
|
|
return tokens
|
|
|
|
@torch.no_grad()
|
|
def encode(self, text):
|
|
tokens = self(text)
|
|
if not self.vq_interface:
|
|
return tokens
|
|
return None, None, [None, None, tokens]
|
|
|
|
def decode(self, text):
|
|
return text
|
|
|
|
|
|
class BERTEmbedder(AbstractEncoder):
|
|
"""Uses the BERT tokenizr model and add some transformer encoder layers"""
|
|
|
|
def __init__(
|
|
self,
|
|
n_embed,
|
|
n_layer,
|
|
vocab_size=30522,
|
|
max_seq_len=77,
|
|
device=choose_torch_device(),
|
|
use_tokenizer=True,
|
|
embedding_dropout=0.0,
|
|
):
|
|
super().__init__()
|
|
self.use_tknz_fn = use_tokenizer
|
|
if self.use_tknz_fn:
|
|
self.tknz_fn = BERTTokenizer(
|
|
vq_interface=False, max_length=max_seq_len
|
|
)
|
|
self.device = device
|
|
self.transformer = TransformerWrapper(
|
|
num_tokens=vocab_size,
|
|
max_seq_len=max_seq_len,
|
|
attn_layers=Encoder(dim=n_embed, depth=n_layer),
|
|
emb_dropout=embedding_dropout,
|
|
)
|
|
|
|
def forward(self, text, embedding_manager=None):
|
|
if self.use_tknz_fn:
|
|
tokens = self.tknz_fn(text) # .to(self.device)
|
|
else:
|
|
tokens = text
|
|
z = self.transformer(
|
|
tokens, return_embeddings=True, embedding_manager=embedding_manager
|
|
)
|
|
return z
|
|
|
|
def encode(self, text, **kwargs):
|
|
# output of length 77
|
|
return self(text, **kwargs)
|
|
|
|
|
|
class SpatialRescaler(nn.Module):
|
|
def __init__(
|
|
self,
|
|
n_stages=1,
|
|
method='bilinear',
|
|
multiplier=0.5,
|
|
in_channels=3,
|
|
out_channels=None,
|
|
bias=False,
|
|
):
|
|
super().__init__()
|
|
self.n_stages = n_stages
|
|
assert self.n_stages >= 0
|
|
assert method in [
|
|
'nearest',
|
|
'linear',
|
|
'bilinear',
|
|
'trilinear',
|
|
'bicubic',
|
|
'area',
|
|
]
|
|
self.multiplier = multiplier
|
|
self.interpolator = partial(
|
|
torch.nn.functional.interpolate, mode=method
|
|
)
|
|
self.remap_output = out_channels is not None
|
|
if self.remap_output:
|
|
print(
|
|
f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.'
|
|
)
|
|
self.channel_mapper = nn.Conv2d(
|
|
in_channels, out_channels, 1, bias=bias
|
|
)
|
|
|
|
def forward(self, x):
|
|
for stage in range(self.n_stages):
|
|
x = self.interpolator(x, scale_factor=self.multiplier)
|
|
|
|
if self.remap_output:
|
|
x = self.channel_mapper(x)
|
|
return x
|
|
|
|
def encode(self, x):
|
|
return self(x)
|
|
|
|
|
|
class FrozenCLIPEmbedder(AbstractEncoder):
|
|
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
|
|
|
def __init__(
|
|
self,
|
|
version='openai/clip-vit-large-patch14',
|
|
device=choose_torch_device(),
|
|
max_length=77,
|
|
):
|
|
super().__init__()
|
|
self.tokenizer = CLIPTokenizer.from_pretrained(
|
|
version, local_files_only=True
|
|
)
|
|
self.transformer = CLIPTextModel.from_pretrained(
|
|
version, local_files_only=True
|
|
)
|
|
self.device = device
|
|
self.max_length = max_length
|
|
self.freeze()
|
|
|
|
def embedding_forward(
|
|
self,
|
|
input_ids=None,
|
|
position_ids=None,
|
|
inputs_embeds=None,
|
|
embedding_manager=None,
|
|
) -> torch.Tensor:
|
|
|
|
seq_length = (
|
|
input_ids.shape[-1]
|
|
if input_ids is not None
|
|
else inputs_embeds.shape[-2]
|
|
)
|
|
|
|
if position_ids is None:
|
|
position_ids = self.position_ids[:, :seq_length]
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.token_embedding(input_ids)
|
|
|
|
if embedding_manager is not None:
|
|
inputs_embeds = embedding_manager(input_ids, inputs_embeds)
|
|
|
|
position_embeddings = self.position_embedding(position_ids)
|
|
embeddings = inputs_embeds + position_embeddings
|
|
|
|
return embeddings
|
|
|
|
self.transformer.text_model.embeddings.forward = (
|
|
embedding_forward.__get__(self.transformer.text_model.embeddings)
|
|
)
|
|
|
|
def encoder_forward(
|
|
self,
|
|
inputs_embeds,
|
|
attention_mask=None,
|
|
causal_attention_mask=None,
|
|
output_attentions=None,
|
|
output_hidden_states=None,
|
|
return_dict=None,
|
|
):
|
|
output_attentions = (
|
|
output_attentions
|
|
if output_attentions is not None
|
|
else self.config.output_attentions
|
|
)
|
|
output_hidden_states = (
|
|
output_hidden_states
|
|
if output_hidden_states is not None
|
|
else self.config.output_hidden_states
|
|
)
|
|
return_dict = (
|
|
return_dict
|
|
if return_dict is not None
|
|
else self.config.use_return_dict
|
|
)
|
|
|
|
encoder_states = () if output_hidden_states else None
|
|
all_attentions = () if output_attentions else None
|
|
|
|
hidden_states = inputs_embeds
|
|
for idx, encoder_layer in enumerate(self.layers):
|
|
if output_hidden_states:
|
|
encoder_states = encoder_states + (hidden_states,)
|
|
|
|
layer_outputs = encoder_layer(
|
|
hidden_states,
|
|
attention_mask,
|
|
causal_attention_mask,
|
|
output_attentions=output_attentions,
|
|
)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if output_attentions:
|
|
all_attentions = all_attentions + (layer_outputs[1],)
|
|
|
|
if output_hidden_states:
|
|
encoder_states = encoder_states + (hidden_states,)
|
|
|
|
return hidden_states
|
|
|
|
self.transformer.text_model.encoder.forward = encoder_forward.__get__(
|
|
self.transformer.text_model.encoder
|
|
)
|
|
|
|
def text_encoder_forward(
|
|
self,
|
|
input_ids=None,
|
|
attention_mask=None,
|
|
position_ids=None,
|
|
output_attentions=None,
|
|
output_hidden_states=None,
|
|
return_dict=None,
|
|
embedding_manager=None,
|
|
):
|
|
output_attentions = (
|
|
output_attentions
|
|
if output_attentions is not None
|
|
else self.config.output_attentions
|
|
)
|
|
output_hidden_states = (
|
|
output_hidden_states
|
|
if output_hidden_states is not None
|
|
else self.config.output_hidden_states
|
|
)
|
|
return_dict = (
|
|
return_dict
|
|
if return_dict is not None
|
|
else self.config.use_return_dict
|
|
)
|
|
|
|
if input_ids is None:
|
|
raise ValueError('You have to specify either input_ids')
|
|
|
|
input_shape = input_ids.size()
|
|
input_ids = input_ids.view(-1, input_shape[-1])
|
|
|
|
hidden_states = self.embeddings(
|
|
input_ids=input_ids,
|
|
position_ids=position_ids,
|
|
embedding_manager=embedding_manager,
|
|
)
|
|
|
|
bsz, seq_len = input_shape
|
|
# CLIP's text model uses causal mask, prepare it here.
|
|
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
|
|
causal_attention_mask = _build_causal_attention_mask(
|
|
bsz, seq_len, hidden_states.dtype
|
|
).to(hidden_states.device)
|
|
|
|
# expand attention_mask
|
|
if attention_mask is not None:
|
|
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
|
attention_mask = _expand_mask(
|
|
attention_mask, hidden_states.dtype
|
|
)
|
|
|
|
last_hidden_state = self.encoder(
|
|
inputs_embeds=hidden_states,
|
|
attention_mask=attention_mask,
|
|
causal_attention_mask=causal_attention_mask,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
last_hidden_state = self.final_layer_norm(last_hidden_state)
|
|
|
|
return last_hidden_state
|
|
|
|
self.transformer.text_model.forward = text_encoder_forward.__get__(
|
|
self.transformer.text_model
|
|
)
|
|
|
|
def transformer_forward(
|
|
self,
|
|
input_ids=None,
|
|
attention_mask=None,
|
|
position_ids=None,
|
|
output_attentions=None,
|
|
output_hidden_states=None,
|
|
return_dict=None,
|
|
embedding_manager=None,
|
|
):
|
|
return self.text_model(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
embedding_manager=embedding_manager,
|
|
)
|
|
|
|
self.transformer.forward = transformer_forward.__get__(
|
|
self.transformer
|
|
)
|
|
|
|
def freeze(self):
|
|
self.transformer = self.transformer.eval()
|
|
for param in self.parameters():
|
|
param.requires_grad = False
|
|
|
|
def forward(self, text, **kwargs):
|
|
|
|
batch_encoding = self.tokenizer(
|
|
text,
|
|
truncation=True,
|
|
max_length=self.max_length,
|
|
return_length=True,
|
|
return_overflowing_tokens=False,
|
|
padding='max_length',
|
|
return_tensors='pt',
|
|
)
|
|
tokens = batch_encoding['input_ids'].to(self.device)
|
|
z = self.transformer(input_ids=tokens, **kwargs)
|
|
|
|
return z
|
|
|
|
def encode(self, text, **kwargs):
|
|
return self(text, **kwargs)
|
|
|
|
class WeightedFrozenCLIPEmbedder(FrozenCLIPEmbedder):
|
|
|
|
fragment_weights_key = "fragment_weights"
|
|
return_tokens_key = "return_tokens"
|
|
|
|
def forward(self, text: list, **kwargs):
|
|
'''
|
|
|
|
:param text: A batch of prompt strings, or, a batch of lists of fragments of prompt strings to which different
|
|
weights shall be applied.
|
|
:param kwargs: If the keyword arg "fragment_weights" is passed, it shall contain a batch of lists of weights
|
|
for the prompt fragments. In this case text must contain batches of lists of prompt fragments.
|
|
:return: A tensor of shape (B, 77, 768) containing weighted embeddings
|
|
'''
|
|
if self.fragment_weights_key not in kwargs:
|
|
# fallback to base class implementation
|
|
return super().forward(text, **kwargs)
|
|
|
|
fragment_weights = kwargs[self.fragment_weights_key]
|
|
# self.transformer doesn't like receiving "fragment_weights" as an argument
|
|
kwargs.pop(self.fragment_weights_key)
|
|
|
|
should_return_tokens = False
|
|
if self.return_tokens_key in kwargs:
|
|
should_return_tokens = kwargs.get(self.return_tokens_key, False)
|
|
# self.transformer doesn't like having extra kwargs
|
|
kwargs.pop(self.return_tokens_key)
|
|
|
|
batch_z = None
|
|
batch_tokens = None
|
|
for fragments, weights in zip(text, fragment_weights):
|
|
|
|
# First, weight tokens in individual fragments by scaling the feature vectors as requested (effectively
|
|
# applying a multiplier to the CFG scale on a per-token basis).
|
|
# For tokens weighted<1, intuitively we want SD to become not merely *less* interested in the concept
|
|
# captured by the fragment but actually *dis*interested in it (a 0.01 interest in "red" is still an active
|
|
# interest, however small, in redness; what the user probably intends when they attach the number 0.01 to
|
|
# "red" is to tell SD that it should almost completely *ignore* redness).
|
|
# To do this, the embedding is lerped away from base_embedding in the direction of an embedding for a prompt
|
|
# string from which the low-weighted fragment has been simply removed. The closer the weight is to zero, the
|
|
# closer the resulting embedding is to an embedding for a prompt that simply lacks this fragment.
|
|
|
|
# handle weights >=1
|
|
tokens, per_token_weights = self.get_tokens_and_weights(fragments, weights)
|
|
base_embedding = self.build_weighted_embedding_tensor(tokens, per_token_weights, **kwargs)
|
|
|
|
# this is our starting point
|
|
embeddings = base_embedding.unsqueeze(0)
|
|
per_embedding_weights = [1.0]
|
|
|
|
# now handle weights <1
|
|
# Do this by building extra embeddings tensors that lack the words being <1 weighted. These will be lerped
|
|
# with the embeddings tensors that have the words, such that if the weight of a word is 0.5, the resulting
|
|
# embedding will be exactly half-way between the unweighted prompt and the prompt with the <1 weighted words
|
|
# removed.
|
|
# eg for "mountain:1 man:0.5", intuitively the "man" should be "half-gone". therefore, append an embedding
|
|
# for "mountain" (i.e. without "man") to the already-produced embedding for "mountain man", and weight it
|
|
# such that the resulting lerped embedding is exactly half-way between "mountain man" and "mountain".
|
|
for index, fragment_weight in enumerate(weights):
|
|
if fragment_weight < 1:
|
|
fragments_without_this = fragments[:index] + fragments[index+1:]
|
|
weights_without_this = weights[:index] + weights[index+1:]
|
|
tokens, per_token_weights = self.get_tokens_and_weights(fragments_without_this, weights_without_this)
|
|
embedding_without_this = self.build_weighted_embedding_tensor(tokens, per_token_weights, **kwargs)
|
|
|
|
embeddings = torch.cat((embeddings, embedding_without_this.unsqueeze(0)), dim=1)
|
|
# weight of the embedding *without* this fragment gets *stronger* as its weight approaches 0
|
|
# if fragment_weight = 0, basically we want embedding_without_this to completely overwhelm base_embedding
|
|
# therefore:
|
|
# fragment_weight = 1: we are at base_z => lerp weight 0
|
|
# fragment_weight = 0.5: we are halfway between base_z and here => lerp weight 1
|
|
# fragment_weight = 0: we're now entirely overriding base_z ==> lerp weight inf
|
|
# so let's use tan(), because:
|
|
# tan is 0.0 at 0,
|
|
# 1.0 at PI/4, and
|
|
# inf at PI/2
|
|
# -> tan((1-weight)*PI/2) should give us ideal lerp weights
|
|
epsilon = 1e-9
|
|
fragment_weight = max(epsilon, fragment_weight) # inf is bad
|
|
embedding_lerp_weight = math.tan((1.0 - fragment_weight) * math.pi / 2)
|
|
# todo handle negative weight?
|
|
|
|
per_embedding_weights.append(embedding_lerp_weight)
|
|
|
|
lerped_embeddings = self.apply_embedding_weights(embeddings, per_embedding_weights, normalize=True).squeeze(0)
|
|
|
|
#print(f"assembled tokens for '{fragments}' into tensor of shape {lerped_embeddings.shape}")
|
|
|
|
# append to batch
|
|
batch_z = lerped_embeddings.unsqueeze(0) if batch_z is None else torch.cat([batch_z, lerped_embeddings.unsqueeze(0)], dim=1)
|
|
batch_tokens = tokens.unsqueeze(0) if batch_tokens is None else torch.cat([batch_tokens, tokens.unsqueeze(0)], dim=1)
|
|
|
|
# should have shape (B, 77, 768)
|
|
#print(f"assembled all tokens into tensor of shape {batch_z.shape}")
|
|
|
|
if should_return_tokens:
|
|
return batch_z, batch_tokens
|
|
else:
|
|
return batch_z
|
|
|
|
def get_tokens(self, fragments: list[str], include_start_and_end_markers: bool = True) -> list[list[int]]:
|
|
tokens = self.tokenizer(
|
|
fragments,
|
|
truncation=True,
|
|
max_length=self.max_length,
|
|
return_overflowing_tokens=False,
|
|
padding='do_not_pad',
|
|
return_tensors=None, # just give me a list of ints
|
|
)['input_ids']
|
|
if include_start_and_end_markers:
|
|
return tokens
|
|
else:
|
|
return [x[1:-1] for x in tokens]
|
|
|
|
|
|
@classmethod
|
|
def apply_embedding_weights(self, embeddings: torch.Tensor, per_embedding_weights: list[float], normalize:bool) -> torch.Tensor:
|
|
per_embedding_weights = torch.tensor(per_embedding_weights, dtype=embeddings.dtype, device=embeddings.device)
|
|
if normalize:
|
|
per_embedding_weights = per_embedding_weights / torch.sum(per_embedding_weights)
|
|
reshaped_weights = per_embedding_weights.reshape(per_embedding_weights.shape + (1, 1,))
|
|
#reshaped_weights = per_embedding_weights.reshape(per_embedding_weights.shape + (1,1,)).expand(embeddings.shape)
|
|
return torch.sum(embeddings * reshaped_weights, dim=1)
|
|
# lerped embeddings has shape (77, 768)
|
|
|
|
|
|
def get_tokens_and_weights(self, fragments: list[str], weights: list[float]) -> (torch.Tensor, torch.Tensor):
|
|
'''
|
|
|
|
:param fragments:
|
|
:param weights: Per-fragment weights (CFG scaling). No need for these to be normalized. They will not be normalized here and that's fine.
|
|
:return:
|
|
'''
|
|
# empty is meaningful
|
|
if len(fragments) == 0 and len(weights) == 0:
|
|
fragments = ['']
|
|
weights = [1]
|
|
item_encodings = self.tokenizer(
|
|
fragments,
|
|
truncation=True,
|
|
max_length=self.max_length,
|
|
return_overflowing_tokens=False,
|
|
padding='do_not_pad',
|
|
return_tensors=None, # just give me a list of ints
|
|
)['input_ids']
|
|
all_tokens = []
|
|
per_token_weights = []
|
|
#print("all fragments:", fragments, weights)
|
|
for index, fragment in enumerate(item_encodings):
|
|
weight = weights[index]
|
|
#print("processing fragment", fragment, weight)
|
|
fragment_tokens = item_encodings[index]
|
|
#print("fragment", fragment, "processed to", fragment_tokens)
|
|
# trim bos and eos markers before appending
|
|
all_tokens.extend(fragment_tokens[1:-1])
|
|
per_token_weights.extend([weight] * (len(fragment_tokens) - 2))
|
|
|
|
if (len(all_tokens) + 2) > self.max_length:
|
|
excess_token_count = (len(all_tokens) + 2) - self.max_length
|
|
print(f"prompt is {excess_token_count} token(s) too long and has been truncated")
|
|
all_tokens = all_tokens[:self.max_length - 2]
|
|
|
|
# pad out to a 77-entry array: [eos_token, <prompt tokens>, eos_token, ..., eos_token]
|
|
# (77 = self.max_length)
|
|
pad_length = self.max_length - 1 - len(all_tokens)
|
|
all_tokens.insert(0, self.tokenizer.bos_token_id)
|
|
all_tokens.extend([self.tokenizer.eos_token_id] * pad_length)
|
|
per_token_weights.insert(0, 1)
|
|
per_token_weights.extend([1] * pad_length)
|
|
|
|
all_tokens_tensor = torch.tensor(all_tokens, dtype=torch.long).to(self.device)
|
|
per_token_weights_tensor = torch.tensor(per_token_weights, dtype=torch.float32).to(self.device)
|
|
#print(f"assembled all_tokens_tensor with shape {all_tokens_tensor.shape}")
|
|
return all_tokens_tensor, per_token_weights_tensor
|
|
|
|
def build_weighted_embedding_tensor(self, tokens: torch.Tensor, per_token_weights: torch.Tensor, weight_delta_from_empty=True, **kwargs) -> torch.Tensor:
|
|
'''
|
|
Build a tensor representing the passed-in tokens, each of which has a weight.
|
|
:param tokens: A tensor of shape (77) containing token ids (integers)
|
|
:param per_token_weights: A tensor of shape (77) containing weights (floats)
|
|
:param method: Whether to multiply the whole feature vector for each token or just its distance from an "empty" feature vector
|
|
:param kwargs: passed on to self.transformer()
|
|
:return: A tensor of shape (1, 77, 768) representing the requested weighted embeddings.
|
|
'''
|
|
#print(f"building weighted embedding tensor for {tokens} with weights {per_token_weights}")
|
|
z = self.transformer(input_ids=tokens.unsqueeze(0), **kwargs)
|
|
batch_weights_expanded = per_token_weights.reshape(per_token_weights.shape + (1,)).expand(z.shape)
|
|
|
|
if weight_delta_from_empty:
|
|
empty_tokens = self.tokenizer([''] * z.shape[0],
|
|
truncation=True,
|
|
max_length=self.max_length,
|
|
padding='max_length',
|
|
return_tensors='pt'
|
|
)['input_ids'].to(self.device)
|
|
empty_z = self.transformer(input_ids=empty_tokens, **kwargs)
|
|
z_delta_from_empty = z - empty_z
|
|
weighted_z = empty_z + (z_delta_from_empty * batch_weights_expanded)
|
|
|
|
weighted_z_delta_from_empty = (weighted_z-empty_z)
|
|
#print("weighted z has delta from empty with sum", weighted_z_delta_from_empty.sum().item(), "mean", weighted_z_delta_from_empty.mean().item() )
|
|
|
|
#print("using empty-delta method, first 5 rows:")
|
|
#print(weighted_z[:5])
|
|
|
|
return weighted_z
|
|
|
|
else:
|
|
original_mean = z.mean()
|
|
z *= batch_weights_expanded
|
|
after_weighting_mean = z.mean()
|
|
# correct the mean. not sure if this is right but it's what the automatic1111 fork of SD does
|
|
mean_correction_factor = original_mean/after_weighting_mean
|
|
z *= mean_correction_factor
|
|
return z
|
|
|
|
|
|
class FrozenCLIPTextEmbedder(nn.Module):
|
|
"""
|
|
Uses the CLIP transformer encoder for text.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
version='ViT-L/14',
|
|
device=choose_torch_device(),
|
|
max_length=77,
|
|
n_repeat=1,
|
|
normalize=True,
|
|
):
|
|
super().__init__()
|
|
self.model, _ = clip.load(version, jit=False, device=device)
|
|
self.device = device
|
|
self.max_length = max_length
|
|
self.n_repeat = n_repeat
|
|
self.normalize = normalize
|
|
|
|
def freeze(self):
|
|
self.model = self.model.eval()
|
|
for param in self.parameters():
|
|
param.requires_grad = False
|
|
|
|
def forward(self, text):
|
|
tokens = clip.tokenize(text).to(self.device)
|
|
z = self.model.encode_text(tokens)
|
|
if self.normalize:
|
|
z = z / torch.linalg.norm(z, dim=1, keepdim=True)
|
|
return z
|
|
|
|
def encode(self, text):
|
|
z = self(text)
|
|
if z.ndim == 2:
|
|
z = z[:, None, :]
|
|
z = repeat(z, 'b 1 d -> b k d', k=self.n_repeat)
|
|
return z
|
|
|
|
|
|
class FrozenClipImageEmbedder(nn.Module):
|
|
"""
|
|
Uses the CLIP image encoder.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model,
|
|
jit=False,
|
|
device=choose_torch_device(),
|
|
antialias=False,
|
|
):
|
|
super().__init__()
|
|
self.model, _ = clip.load(name=model, device=device, jit=jit)
|
|
|
|
self.antialias = antialias
|
|
|
|
self.register_buffer(
|
|
'mean',
|
|
torch.Tensor([0.48145466, 0.4578275, 0.40821073]),
|
|
persistent=False,
|
|
)
|
|
self.register_buffer(
|
|
'std',
|
|
torch.Tensor([0.26862954, 0.26130258, 0.27577711]),
|
|
persistent=False,
|
|
)
|
|
|
|
def preprocess(self, x):
|
|
# normalize to [0,1]
|
|
x = kornia.geometry.resize(
|
|
x,
|
|
(224, 224),
|
|
interpolation='bicubic',
|
|
align_corners=True,
|
|
antialias=self.antialias,
|
|
)
|
|
x = (x + 1.0) / 2.0
|
|
# renormalize according to clip
|
|
x = kornia.enhance.normalize(x, self.mean, self.std)
|
|
return x
|
|
|
|
def forward(self, x):
|
|
# x is assumed to be in range [-1,1]
|
|
return self.model.encode_image(self.preprocess(x))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
from ldm.util import count_params
|
|
|
|
model = FrozenCLIPEmbedder()
|
|
count_params(model, verbose=True)
|