mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
be8b99eed5
- Replace AnyModelLoader with ModelLoaderRegistry - Fix type check errors in multiple files - Remove apparently unneeded `get_model_config_enum()` method from model manager - Remove last vestiges of old model manager - Updated tests and documentation resolve conflict with seamless.py
32 lines
1.4 KiB
Python
32 lines
1.4 KiB
Python
from contextlib import contextmanager
|
|
from typing import Any, Generator
|
|
|
|
import torch
|
|
|
|
|
|
def _no_op(*args: Any, **kwargs: Any) -> None:
|
|
pass
|
|
|
|
|
|
@contextmanager
|
|
def skip_torch_weight_init() -> Generator[None, None, None]:
|
|
"""Monkey patch several of the common torch layers (torch.nn.Linear, torch.nn.Conv1d, etc.) to skip weight initialization.
|
|
|
|
By default, `torch.nn.Linear` and `torch.nn.ConvNd` layers initialize their weights (according to a particular
|
|
distribution) when __init__ is called. This weight initialization step can take a significant amount of time, and is
|
|
completely unnecessary if the intent is to load checkpoint weights from disk for the layer. This context manager
|
|
monkey-patches common torch layers to skip the weight initialization step.
|
|
"""
|
|
torch_modules = [torch.nn.Linear, torch.nn.modules.conv._ConvNd, torch.nn.Embedding]
|
|
saved_functions = [hasattr(m, "reset_parameters") and m.reset_parameters for m in torch_modules]
|
|
|
|
try:
|
|
for torch_module in torch_modules:
|
|
assert hasattr(torch_module, "reset_parameters")
|
|
torch_module.reset_parameters = _no_op
|
|
yield None
|
|
finally:
|
|
for torch_module, saved_function in zip(torch_modules, saved_functions, strict=True):
|
|
assert hasattr(torch_module, "reset_parameters")
|
|
torch_module.reset_parameters = saved_function
|