mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
233869b56a
This PR is to allow FP16 precision to work on Macs with MPS. In addition, it centralizes the torch fixes/workarounds required for MPS into a new backend utility file `mps_fixes.py`. This is conditionally imported in `api_app.py`/`cli_app.py`. Many MANY thanks to StAlKeR7779 for patiently working to debug and fix these issues.
98 lines
3.1 KiB
Python
98 lines
3.1 KiB
Python
"""
|
|
invokeai.backend.generator.img2img descends from .generator
|
|
"""
|
|
from typing import Optional
|
|
|
|
import torch
|
|
from accelerate.utils import set_seed
|
|
from diffusers import logging
|
|
|
|
from ..stable_diffusion import (
|
|
ConditioningData,
|
|
PostprocessingSettings,
|
|
StableDiffusionGeneratorPipeline,
|
|
)
|
|
from .base import Generator
|
|
|
|
|
|
class Img2Img(Generator):
|
|
def __init__(self, model, precision):
|
|
super().__init__(model, precision)
|
|
self.init_latent = None # by get_noise()
|
|
|
|
def get_make_image(
|
|
self,
|
|
sampler,
|
|
steps,
|
|
cfg_scale,
|
|
ddim_eta,
|
|
conditioning,
|
|
init_image,
|
|
strength,
|
|
step_callback=None,
|
|
threshold=0.0,
|
|
warmup=0.2,
|
|
perlin=0.0,
|
|
h_symmetry_time_pct=None,
|
|
v_symmetry_time_pct=None,
|
|
attention_maps_callback=None,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Returns a function returning an image derived from the prompt and the initial image
|
|
Return value depends on the seed at the time you call it.
|
|
"""
|
|
self.perlin = perlin
|
|
|
|
# noinspection PyTypeChecker
|
|
pipeline: StableDiffusionGeneratorPipeline = self.model
|
|
pipeline.scheduler = sampler
|
|
|
|
uc, c, extra_conditioning_info = conditioning
|
|
conditioning_data = ConditioningData(
|
|
uc,
|
|
c,
|
|
cfg_scale,
|
|
extra_conditioning_info,
|
|
postprocessing_settings=PostprocessingSettings(
|
|
threshold=threshold,
|
|
warmup=warmup,
|
|
h_symmetry_time_pct=h_symmetry_time_pct,
|
|
v_symmetry_time_pct=v_symmetry_time_pct,
|
|
),
|
|
).add_scheduler_args_if_applicable(pipeline.scheduler, eta=ddim_eta)
|
|
|
|
def make_image(x_T: torch.Tensor, seed: int):
|
|
# FIXME: use x_T for initial seeded noise
|
|
# We're not at the moment because the pipeline automatically resizes init_image if
|
|
# necessary, which the x_T input might not match.
|
|
# In the meantime, reset the seed prior to generating pipeline output so we at least get the same result.
|
|
logging.set_verbosity_error() # quench safety check warnings
|
|
pipeline_output = pipeline.img2img_from_embeddings(
|
|
init_image,
|
|
strength,
|
|
steps,
|
|
conditioning_data,
|
|
noise_func=self.get_noise_like,
|
|
callback=step_callback,
|
|
seed=seed,
|
|
)
|
|
if (
|
|
pipeline_output.attention_map_saver is not None
|
|
and attention_maps_callback is not None
|
|
):
|
|
attention_maps_callback(pipeline_output.attention_map_saver)
|
|
return pipeline.numpy_to_pil(pipeline_output.images)[0]
|
|
|
|
return make_image
|
|
|
|
def get_noise_like(self, like: torch.Tensor):
|
|
device = like.device
|
|
x = torch.randn_like(like, device=device)
|
|
if self.perlin > 0.0:
|
|
shape = like.shape
|
|
x = (1 - self.perlin) * x + self.perlin * self.get_perlin_noise(
|
|
shape[3], shape[2]
|
|
)
|
|
return x
|