mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
132 lines
3.8 KiB
Python
132 lines
3.8 KiB
Python
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
|
|
|
from abc import ABC, abstractmethod
|
|
from inspect import signature
|
|
from typing import get_args, get_type_hints, Dict, List, Literal, TypedDict
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
from ..services.invocation_services import InvocationServices
|
|
|
|
|
|
class InvocationContext:
|
|
services: InvocationServices
|
|
graph_execution_state_id: str
|
|
|
|
def __init__(self, services: InvocationServices, graph_execution_state_id: str):
|
|
self.services = services
|
|
self.graph_execution_state_id = graph_execution_state_id
|
|
|
|
|
|
class BaseInvocationOutput(BaseModel):
|
|
"""Base class for all invocation outputs"""
|
|
|
|
# All outputs must include a type name like this:
|
|
# type: Literal['your_output_name']
|
|
|
|
@classmethod
|
|
def get_all_subclasses_tuple(cls):
|
|
subclasses = []
|
|
toprocess = [cls]
|
|
while len(toprocess) > 0:
|
|
next = toprocess.pop(0)
|
|
next_subclasses = next.__subclasses__()
|
|
subclasses.extend(next_subclasses)
|
|
toprocess.extend(next_subclasses)
|
|
return tuple(subclasses)
|
|
|
|
|
|
class BaseInvocation(ABC, BaseModel):
|
|
"""A node to process inputs and produce outputs.
|
|
May use dependency injection in __init__ to receive providers.
|
|
"""
|
|
|
|
# All invocations must include a type name like this:
|
|
# type: Literal['your_output_name']
|
|
|
|
@classmethod
|
|
def get_all_subclasses(cls):
|
|
subclasses = []
|
|
toprocess = [cls]
|
|
while len(toprocess) > 0:
|
|
next = toprocess.pop(0)
|
|
next_subclasses = next.__subclasses__()
|
|
subclasses.extend(next_subclasses)
|
|
toprocess.extend(next_subclasses)
|
|
return subclasses
|
|
|
|
@classmethod
|
|
def get_invocations(cls):
|
|
return tuple(BaseInvocation.get_all_subclasses())
|
|
|
|
@classmethod
|
|
def get_invocations_map(cls):
|
|
# Get the type strings out of the literals and into a dictionary
|
|
return dict(map(lambda t: (get_args(get_type_hints(t)['type'])[0], t),BaseInvocation.get_all_subclasses()))
|
|
|
|
@classmethod
|
|
def get_output_type(cls):
|
|
return signature(cls.invoke).return_annotation
|
|
|
|
@abstractmethod
|
|
def invoke(self, context: InvocationContext) -> BaseInvocationOutput:
|
|
"""Invoke with provided context and return outputs."""
|
|
pass
|
|
|
|
#fmt: off
|
|
id: str = Field(description="The id of this node. Must be unique among all nodes.")
|
|
#fmt: on
|
|
|
|
|
|
# TODO: figure out a better way to provide these hints
|
|
# TODO: when we can upgrade to python 3.11, we can use the`NotRequired` type instead of `total=False`
|
|
class UIConfig(TypedDict, total=False):
|
|
type_hints: Dict[
|
|
str,
|
|
Literal[
|
|
"integer",
|
|
"float",
|
|
"boolean",
|
|
"string",
|
|
"enum",
|
|
"image",
|
|
"latents",
|
|
"model",
|
|
],
|
|
]
|
|
tags: List[str]
|
|
|
|
|
|
class CustomisedSchemaExtra(TypedDict):
|
|
ui: UIConfig
|
|
|
|
|
|
class InvocationConfig(BaseModel.Config):
|
|
"""Customizes pydantic's BaseModel.Config class for use by Invocations.
|
|
|
|
Provide `schema_extra` a `ui` dict to add hints for generated UIs.
|
|
|
|
`tags`
|
|
- A list of strings, used to categorise invocations.
|
|
|
|
`type_hints`
|
|
- A dict of field types which override the types in the invocation definition.
|
|
- Each key should be the name of one of the invocation's fields.
|
|
- Each value should be one of the valid types:
|
|
- `integer`, `float`, `boolean`, `string`, `enum`, `image`, `latents`, `model`
|
|
|
|
```python
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"tags": ["stable-diffusion", "image"],
|
|
"type_hints": {
|
|
"initial_image": "image",
|
|
},
|
|
},
|
|
}
|
|
```
|
|
"""
|
|
|
|
schema_extra: CustomisedSchemaExtra
|