mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
123 lines
4.5 KiB
Python
123 lines
4.5 KiB
Python
import os
|
|
import sys
|
|
import warnings
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
import invokeai.backend.util.logging as log
|
|
from ..globals import Globals
|
|
|
|
pretrained_model_url = (
|
|
"https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth"
|
|
)
|
|
|
|
|
|
class CodeFormerRestoration:
|
|
def __init__(
|
|
self, codeformer_dir="models/codeformer", codeformer_model_path="codeformer.pth"
|
|
) -> None:
|
|
if not os.path.isabs(codeformer_dir):
|
|
codeformer_dir = os.path.join(Globals.root, codeformer_dir)
|
|
|
|
self.model_path = os.path.join(codeformer_dir, codeformer_model_path)
|
|
self.codeformer_model_exists = os.path.isfile(self.model_path)
|
|
|
|
if not self.codeformer_model_exists:
|
|
log.error("NOT FOUND: CodeFormer model not found at " + self.model_path)
|
|
sys.path.append(os.path.abspath(codeformer_dir))
|
|
|
|
def process(self, image, strength, device, seed=None, fidelity=0.75):
|
|
if seed is not None:
|
|
log.info(f"CodeFormer - Restoring Faces for image seed:{seed}")
|
|
with warnings.catch_warnings():
|
|
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
|
warnings.filterwarnings("ignore", category=UserWarning)
|
|
|
|
from basicsr.utils import img2tensor, tensor2img
|
|
from basicsr.utils.download_util import load_file_from_url
|
|
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
|
|
from PIL import Image
|
|
from torchvision.transforms.functional import normalize
|
|
|
|
from .codeformer_arch import CodeFormer
|
|
|
|
cf_class = CodeFormer
|
|
|
|
cf = cf_class(
|
|
dim_embd=512,
|
|
codebook_size=1024,
|
|
n_head=8,
|
|
n_layers=9,
|
|
connect_list=["32", "64", "128", "256"],
|
|
).to(device)
|
|
|
|
# note that this file should already be downloaded and cached at
|
|
# this point
|
|
checkpoint_path = load_file_from_url(
|
|
url=pretrained_model_url,
|
|
model_dir=os.path.abspath(os.path.dirname(self.model_path)),
|
|
progress=True,
|
|
)
|
|
checkpoint = torch.load(checkpoint_path)["params_ema"]
|
|
cf.load_state_dict(checkpoint)
|
|
cf.eval()
|
|
|
|
image = image.convert("RGB")
|
|
# Codeformer expects a BGR np array; make array and flip channels
|
|
bgr_image_array = np.array(image, dtype=np.uint8)[..., ::-1]
|
|
|
|
face_helper = FaceRestoreHelper(
|
|
upscale_factor=1,
|
|
use_parse=True,
|
|
device=device,
|
|
model_rootpath=os.path.join(
|
|
Globals.root, "models", "gfpgan", "weights"
|
|
),
|
|
)
|
|
face_helper.clean_all()
|
|
face_helper.read_image(bgr_image_array)
|
|
face_helper.get_face_landmarks_5(resize=640, eye_dist_threshold=5)
|
|
face_helper.align_warp_face()
|
|
|
|
for idx, cropped_face in enumerate(face_helper.cropped_faces):
|
|
cropped_face_t = img2tensor(
|
|
cropped_face / 255.0, bgr2rgb=True, float32=True
|
|
)
|
|
normalize(
|
|
cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True
|
|
)
|
|
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
|
|
|
|
try:
|
|
with torch.no_grad():
|
|
output = cf(cropped_face_t, w=fidelity, adain=True)[0]
|
|
restored_face = tensor2img(
|
|
output.squeeze(0), rgb2bgr=True, min_max=(-1, 1)
|
|
)
|
|
del output
|
|
torch.cuda.empty_cache()
|
|
except RuntimeError as error:
|
|
log.error(f"Failed inference for CodeFormer: {error}.")
|
|
restored_face = cropped_face
|
|
|
|
restored_face = restored_face.astype("uint8")
|
|
face_helper.add_restored_face(restored_face)
|
|
|
|
face_helper.get_inverse_affine(None)
|
|
|
|
restored_img = face_helper.paste_faces_to_input_image()
|
|
|
|
# Flip the channels back to RGB
|
|
res = Image.fromarray(restored_img[..., ::-1])
|
|
|
|
if strength < 1.0:
|
|
# Resize the image to the new image if the sizes have changed
|
|
if restored_img.size != image.size:
|
|
image = image.resize(res.size)
|
|
res = Image.blend(image, res, strength)
|
|
|
|
cf = None
|
|
|
|
return res
|