InvokeAI/invokeai/backend/restoration/gfpgan.py
2023-04-14 15:15:14 -04:00

86 lines
2.8 KiB
Python

import os
import sys
import warnings
import numpy as np
import torch
from PIL import Image
import invokeai.backend.util.logging as log
from invokeai.backend.globals import Globals
class GFPGAN:
def __init__(self, gfpgan_model_path="models/gfpgan/GFPGANv1.4.pth") -> None:
if not os.path.isabs(gfpgan_model_path):
gfpgan_model_path = os.path.abspath(
os.path.join(Globals.root, gfpgan_model_path)
)
self.model_path = gfpgan_model_path
self.gfpgan_model_exists = os.path.isfile(self.model_path)
if not self.gfpgan_model_exists:
log.error("NOT FOUND: GFPGAN model not found at " + self.model_path)
return None
def model_exists(self):
return os.path.isfile(self.model_path)
def process(self, image, strength: float, seed: str = None):
if seed is not None:
log.info(f"GFPGAN - Restoring Faces for image seed:{seed}")
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
warnings.filterwarnings("ignore", category=UserWarning)
cwd = os.getcwd()
os.chdir(os.path.join(Globals.root, "models"))
try:
from gfpgan import GFPGANer
self.gfpgan = GFPGANer(
model_path=self.model_path,
upscale=1,
arch="clean",
channel_multiplier=2,
bg_upsampler=None,
)
except Exception:
import traceback
log.error("Error loading GFPGAN:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
os.chdir(cwd)
if self.gfpgan is None:
log.warning("WARNING: GFPGAN not initialized.")
log.warning(
f"Download https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth to {self.model_path}"
)
image = image.convert("RGB")
# GFPGAN expects a BGR np array; make array and flip channels
bgr_image_array = np.array(image, dtype=np.uint8)[..., ::-1]
_, _, restored_img = self.gfpgan.enhance(
bgr_image_array,
has_aligned=False,
only_center_face=False,
paste_back=True,
)
# Flip the channels back to RGB
res = Image.fromarray(restored_img[..., ::-1])
if strength < 1.0:
# Resize the image to the new image if the sizes have changed
if restored_img.size != image.size:
image = image.resize(res.size)
res = Image.blend(image, res, strength)
if torch.cuda.is_available():
torch.cuda.empty_cache()
self.gfpgan = None
return res