mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
93 lines
3.2 KiB
Python
93 lines
3.2 KiB
Python
import os
|
|
import numpy as np
|
|
import PIL
|
|
from PIL import Image
|
|
from torch.utils.data import Dataset
|
|
from torchvision import transforms
|
|
|
|
|
|
class LSUNBase(Dataset):
|
|
def __init__(self,
|
|
txt_file,
|
|
data_root,
|
|
size=None,
|
|
interpolation="bicubic",
|
|
flip_p=0.5
|
|
):
|
|
self.data_paths = txt_file
|
|
self.data_root = data_root
|
|
with open(self.data_paths, "r") as f:
|
|
self.image_paths = f.read().splitlines()
|
|
self._length = len(self.image_paths)
|
|
self.labels = {
|
|
"relative_file_path_": [l for l in self.image_paths],
|
|
"file_path_": [os.path.join(self.data_root, l)
|
|
for l in self.image_paths],
|
|
}
|
|
|
|
self.size = size
|
|
self.interpolation = {"linear": PIL.Image.LINEAR,
|
|
"bilinear": PIL.Image.BILINEAR,
|
|
"bicubic": PIL.Image.BICUBIC,
|
|
"lanczos": PIL.Image.LANCZOS,
|
|
}[interpolation]
|
|
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
|
|
|
|
def __len__(self):
|
|
return self._length
|
|
|
|
def __getitem__(self, i):
|
|
example = dict((k, self.labels[k][i]) for k in self.labels)
|
|
image = Image.open(example["file_path_"])
|
|
if not image.mode == "RGB":
|
|
image = image.convert("RGB")
|
|
|
|
# default to score-sde preprocessing
|
|
img = np.array(image).astype(np.uint8)
|
|
crop = min(img.shape[0], img.shape[1])
|
|
h, w, = img.shape[0], img.shape[1]
|
|
img = img[(h - crop) // 2:(h + crop) // 2,
|
|
(w - crop) // 2:(w + crop) // 2]
|
|
|
|
image = Image.fromarray(img)
|
|
if self.size is not None:
|
|
image = image.resize((self.size, self.size), resample=self.interpolation)
|
|
|
|
image = self.flip(image)
|
|
image = np.array(image).astype(np.uint8)
|
|
example["image"] = (image / 127.5 - 1.0).astype(np.float32)
|
|
return example
|
|
|
|
|
|
class LSUNChurchesTrain(LSUNBase):
|
|
def __init__(self, **kwargs):
|
|
super().__init__(txt_file="data/lsun/church_outdoor_train.txt", data_root="data/lsun/churches", **kwargs)
|
|
|
|
|
|
class LSUNChurchesValidation(LSUNBase):
|
|
def __init__(self, flip_p=0., **kwargs):
|
|
super().__init__(txt_file="data/lsun/church_outdoor_val.txt", data_root="data/lsun/churches",
|
|
flip_p=flip_p, **kwargs)
|
|
|
|
|
|
class LSUNBedroomsTrain(LSUNBase):
|
|
def __init__(self, **kwargs):
|
|
super().__init__(txt_file="data/lsun/bedrooms_train.txt", data_root="data/lsun/bedrooms", **kwargs)
|
|
|
|
|
|
class LSUNBedroomsValidation(LSUNBase):
|
|
def __init__(self, flip_p=0.0, **kwargs):
|
|
super().__init__(txt_file="data/lsun/bedrooms_val.txt", data_root="data/lsun/bedrooms",
|
|
flip_p=flip_p, **kwargs)
|
|
|
|
|
|
class LSUNCatsTrain(LSUNBase):
|
|
def __init__(self, **kwargs):
|
|
super().__init__(txt_file="data/lsun/cat_train.txt", data_root="data/lsun/cats", **kwargs)
|
|
|
|
|
|
class LSUNCatsValidation(LSUNBase):
|
|
def __init__(self, flip_p=0., **kwargs):
|
|
super().__init__(txt_file="data/lsun/cat_val.txt", data_root="data/lsun/cats",
|
|
flip_p=flip_p, **kwargs)
|