mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
815 lines
27 KiB
Python
815 lines
27 KiB
Python
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
|
|
|
from typing import Literal, Optional
|
|
|
|
import cv2
|
|
import numpy
|
|
from PIL import Image, ImageFilter, ImageOps, ImageChops
|
|
from pydantic import BaseModel, Field
|
|
from typing import Union
|
|
|
|
from ..models.image import ImageCategory, ImageField, ResourceOrigin
|
|
from .baseinvocation import (
|
|
BaseInvocation,
|
|
BaseInvocationOutput,
|
|
InvocationContext,
|
|
InvocationConfig,
|
|
)
|
|
|
|
|
|
class PILInvocationConfig(BaseModel):
|
|
"""Helper class to provide all PIL invocations with additional config"""
|
|
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"tags": ["PIL", "image"],
|
|
},
|
|
}
|
|
|
|
|
|
class ImageOutput(BaseInvocationOutput):
|
|
"""Base class for invocations that output an image"""
|
|
|
|
# fmt: off
|
|
type: Literal["image_output"] = "image_output"
|
|
image: ImageField = Field(default=None, description="The output image")
|
|
width: int = Field(description="The width of the image in pixels")
|
|
height: int = Field(description="The height of the image in pixels")
|
|
# fmt: on
|
|
|
|
class Config:
|
|
schema_extra = {"required": ["type", "image", "width", "height"]}
|
|
|
|
|
|
class MaskOutput(BaseInvocationOutput):
|
|
"""Base class for invocations that output a mask"""
|
|
|
|
# fmt: off
|
|
type: Literal["mask"] = "mask"
|
|
mask: ImageField = Field(default=None, description="The output mask")
|
|
width: int = Field(description="The width of the mask in pixels")
|
|
height: int = Field(description="The height of the mask in pixels")
|
|
# fmt: on
|
|
|
|
class Config:
|
|
schema_extra = {
|
|
"required": [
|
|
"type",
|
|
"mask",
|
|
]
|
|
}
|
|
|
|
|
|
class LoadImageInvocation(BaseInvocation):
|
|
"""Load an image and provide it as output."""
|
|
|
|
# fmt: off
|
|
type: Literal["load_image"] = "load_image"
|
|
|
|
# Inputs
|
|
image: Optional[ImageField] = Field(
|
|
default=None, description="The image to load"
|
|
)
|
|
# fmt: on
|
|
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"title": "Load Image",
|
|
"tags": ["image", "load"]
|
|
},
|
|
}
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.services.images.get_pil_image(self.image.image_name)
|
|
|
|
return ImageOutput(
|
|
image=ImageField(image_name=self.image.image_name),
|
|
width=image.width,
|
|
height=image.height,
|
|
)
|
|
|
|
|
|
class ShowImageInvocation(BaseInvocation):
|
|
"""Displays a provided image, and passes it forward in the pipeline."""
|
|
|
|
type: Literal["show_image"] = "show_image"
|
|
|
|
# Inputs
|
|
image: Optional[ImageField] = Field(
|
|
default=None, description="The image to show"
|
|
)
|
|
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"title": "Show Image",
|
|
"tags": ["image", "show"]
|
|
},
|
|
}
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.services.images.get_pil_image(self.image.image_name)
|
|
if image:
|
|
image.show()
|
|
|
|
# TODO: how to handle failure?
|
|
|
|
return ImageOutput(
|
|
image=ImageField(image_name=self.image.image_name),
|
|
width=image.width,
|
|
height=image.height,
|
|
)
|
|
|
|
|
|
class ImageCropInvocation(BaseInvocation, PILInvocationConfig):
|
|
"""Crops an image to a specified box. The box can be outside of the image."""
|
|
|
|
# fmt: off
|
|
type: Literal["img_crop"] = "img_crop"
|
|
|
|
# Inputs
|
|
image: Optional[ImageField] = Field(default=None, description="The image to crop")
|
|
x: int = Field(default=0, description="The left x coordinate of the crop rectangle")
|
|
y: int = Field(default=0, description="The top y coordinate of the crop rectangle")
|
|
width: int = Field(default=512, gt=0, description="The width of the crop rectangle")
|
|
height: int = Field(default=512, gt=0, description="The height of the crop rectangle")
|
|
# fmt: on
|
|
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"title": "Crop Image",
|
|
"tags": ["image", "crop"]
|
|
},
|
|
}
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.services.images.get_pil_image(self.image.image_name)
|
|
|
|
image_crop = Image.new(
|
|
mode="RGBA", size=(self.width, self.height), color=(0, 0, 0, 0)
|
|
)
|
|
image_crop.paste(image, (-self.x, -self.y))
|
|
|
|
image_dto = context.services.images.create(
|
|
image=image_crop,
|
|
image_origin=ResourceOrigin.INTERNAL,
|
|
image_category=ImageCategory.GENERAL,
|
|
node_id=self.id,
|
|
session_id=context.graph_execution_state_id,
|
|
is_intermediate=self.is_intermediate,
|
|
)
|
|
|
|
return ImageOutput(
|
|
image=ImageField(image_name=image_dto.image_name),
|
|
width=image_dto.width,
|
|
height=image_dto.height,
|
|
)
|
|
|
|
|
|
class ImagePasteInvocation(BaseInvocation, PILInvocationConfig):
|
|
"""Pastes an image into another image."""
|
|
|
|
# fmt: off
|
|
type: Literal["img_paste"] = "img_paste"
|
|
|
|
# Inputs
|
|
base_image: Optional[ImageField] = Field(default=None, description="The base image")
|
|
image: Optional[ImageField] = Field(default=None, description="The image to paste")
|
|
mask: Optional[ImageField] = Field(default=None, description="The mask to use when pasting")
|
|
x: int = Field(default=0, description="The left x coordinate at which to paste the image")
|
|
y: int = Field(default=0, description="The top y coordinate at which to paste the image")
|
|
# fmt: on
|
|
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"title": "Paste Image",
|
|
"tags": ["image", "paste"]
|
|
},
|
|
}
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
base_image = context.services.images.get_pil_image(self.base_image.image_name)
|
|
image = context.services.images.get_pil_image(self.image.image_name)
|
|
mask = None
|
|
if self.mask is not None:
|
|
mask = context.services.images.get_pil_image(self.mask.image_name)
|
|
mask = ImageOps.invert(mask.convert("L"))
|
|
# TODO: probably shouldn't invert mask here... should user be required to do it?
|
|
|
|
min_x = min(0, self.x)
|
|
min_y = min(0, self.y)
|
|
max_x = max(base_image.width, image.width + self.x)
|
|
max_y = max(base_image.height, image.height + self.y)
|
|
|
|
new_image = Image.new(
|
|
mode="RGBA", size=(max_x - min_x, max_y - min_y), color=(0, 0, 0, 0)
|
|
)
|
|
new_image.paste(base_image, (abs(min_x), abs(min_y)))
|
|
new_image.paste(image, (max(0, self.x), max(0, self.y)), mask=mask)
|
|
|
|
image_dto = context.services.images.create(
|
|
image=new_image,
|
|
image_origin=ResourceOrigin.INTERNAL,
|
|
image_category=ImageCategory.GENERAL,
|
|
node_id=self.id,
|
|
session_id=context.graph_execution_state_id,
|
|
is_intermediate=self.is_intermediate,
|
|
)
|
|
|
|
return ImageOutput(
|
|
image=ImageField(image_name=image_dto.image_name),
|
|
width=image_dto.width,
|
|
height=image_dto.height,
|
|
)
|
|
|
|
|
|
class MaskFromAlphaInvocation(BaseInvocation, PILInvocationConfig):
|
|
"""Extracts the alpha channel of an image as a mask."""
|
|
|
|
# fmt: off
|
|
type: Literal["tomask"] = "tomask"
|
|
|
|
# Inputs
|
|
image: Optional[ImageField] = Field(default=None, description="The image to create the mask from")
|
|
invert: bool = Field(default=False, description="Whether or not to invert the mask")
|
|
# fmt: on
|
|
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"title": "Mask From Alpha",
|
|
"tags": ["image", "mask", "alpha"]
|
|
},
|
|
}
|
|
|
|
def invoke(self, context: InvocationContext) -> MaskOutput:
|
|
image = context.services.images.get_pil_image(self.image.image_name)
|
|
|
|
image_mask = image.split()[-1]
|
|
if self.invert:
|
|
image_mask = ImageOps.invert(image_mask)
|
|
|
|
image_dto = context.services.images.create(
|
|
image=image_mask,
|
|
image_origin=ResourceOrigin.INTERNAL,
|
|
image_category=ImageCategory.MASK,
|
|
node_id=self.id,
|
|
session_id=context.graph_execution_state_id,
|
|
is_intermediate=self.is_intermediate,
|
|
)
|
|
|
|
return MaskOutput(
|
|
mask=ImageField(image_name=image_dto.image_name),
|
|
width=image_dto.width,
|
|
height=image_dto.height,
|
|
)
|
|
|
|
|
|
class ImageMultiplyInvocation(BaseInvocation, PILInvocationConfig):
|
|
"""Multiplies two images together using `PIL.ImageChops.multiply()`."""
|
|
|
|
# fmt: off
|
|
type: Literal["img_mul"] = "img_mul"
|
|
|
|
# Inputs
|
|
image1: Optional[ImageField] = Field(default=None, description="The first image to multiply")
|
|
image2: Optional[ImageField] = Field(default=None, description="The second image to multiply")
|
|
# fmt: on
|
|
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"title": "Multiply Images",
|
|
"tags": ["image", "multiply"]
|
|
},
|
|
}
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image1 = context.services.images.get_pil_image(self.image1.image_name)
|
|
image2 = context.services.images.get_pil_image(self.image2.image_name)
|
|
|
|
multiply_image = ImageChops.multiply(image1, image2)
|
|
|
|
image_dto = context.services.images.create(
|
|
image=multiply_image,
|
|
image_origin=ResourceOrigin.INTERNAL,
|
|
image_category=ImageCategory.GENERAL,
|
|
node_id=self.id,
|
|
session_id=context.graph_execution_state_id,
|
|
is_intermediate=self.is_intermediate,
|
|
)
|
|
|
|
return ImageOutput(
|
|
image=ImageField(image_name=image_dto.image_name),
|
|
width=image_dto.width,
|
|
height=image_dto.height,
|
|
)
|
|
|
|
|
|
IMAGE_CHANNELS = Literal["A", "R", "G", "B"]
|
|
|
|
|
|
class ImageChannelInvocation(BaseInvocation, PILInvocationConfig):
|
|
"""Gets a channel from an image."""
|
|
|
|
# fmt: off
|
|
type: Literal["img_chan"] = "img_chan"
|
|
|
|
# Inputs
|
|
image: Optional[ImageField] = Field(default=None, description="The image to get the channel from")
|
|
channel: IMAGE_CHANNELS = Field(default="A", description="The channel to get")
|
|
# fmt: on
|
|
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"title": "Image Channel",
|
|
"tags": ["image", "channel"]
|
|
},
|
|
}
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.services.images.get_pil_image(self.image.image_name)
|
|
|
|
channel_image = image.getchannel(self.channel)
|
|
|
|
image_dto = context.services.images.create(
|
|
image=channel_image,
|
|
image_origin=ResourceOrigin.INTERNAL,
|
|
image_category=ImageCategory.GENERAL,
|
|
node_id=self.id,
|
|
session_id=context.graph_execution_state_id,
|
|
is_intermediate=self.is_intermediate,
|
|
)
|
|
|
|
return ImageOutput(
|
|
image=ImageField(image_name=image_dto.image_name),
|
|
width=image_dto.width,
|
|
height=image_dto.height,
|
|
)
|
|
|
|
|
|
IMAGE_MODES = Literal["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"]
|
|
|
|
|
|
class ImageConvertInvocation(BaseInvocation, PILInvocationConfig):
|
|
"""Converts an image to a different mode."""
|
|
|
|
# fmt: off
|
|
type: Literal["img_conv"] = "img_conv"
|
|
|
|
# Inputs
|
|
image: Optional[ImageField] = Field(default=None, description="The image to convert")
|
|
mode: IMAGE_MODES = Field(default="L", description="The mode to convert to")
|
|
# fmt: on
|
|
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"title": "Convert Image",
|
|
"tags": ["image", "convert"]
|
|
},
|
|
}
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.services.images.get_pil_image(self.image.image_name)
|
|
|
|
converted_image = image.convert(self.mode)
|
|
|
|
image_dto = context.services.images.create(
|
|
image=converted_image,
|
|
image_origin=ResourceOrigin.INTERNAL,
|
|
image_category=ImageCategory.GENERAL,
|
|
node_id=self.id,
|
|
session_id=context.graph_execution_state_id,
|
|
is_intermediate=self.is_intermediate,
|
|
)
|
|
|
|
return ImageOutput(
|
|
image=ImageField(image_name=image_dto.image_name),
|
|
width=image_dto.width,
|
|
height=image_dto.height,
|
|
)
|
|
|
|
|
|
class ImageBlurInvocation(BaseInvocation, PILInvocationConfig):
|
|
"""Blurs an image"""
|
|
|
|
# fmt: off
|
|
type: Literal["img_blur"] = "img_blur"
|
|
|
|
# Inputs
|
|
image: Optional[ImageField] = Field(default=None, description="The image to blur")
|
|
radius: float = Field(default=8.0, ge=0, description="The blur radius")
|
|
blur_type: Literal["gaussian", "box"] = Field(default="gaussian", description="The type of blur")
|
|
# fmt: on
|
|
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"title": "Blur Image",
|
|
"tags": ["image", "blur"]
|
|
},
|
|
}
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.services.images.get_pil_image(self.image.image_name)
|
|
|
|
blur = (
|
|
ImageFilter.GaussianBlur(self.radius)
|
|
if self.blur_type == "gaussian"
|
|
else ImageFilter.BoxBlur(self.radius)
|
|
)
|
|
blur_image = image.filter(blur)
|
|
|
|
image_dto = context.services.images.create(
|
|
image=blur_image,
|
|
image_origin=ResourceOrigin.INTERNAL,
|
|
image_category=ImageCategory.GENERAL,
|
|
node_id=self.id,
|
|
session_id=context.graph_execution_state_id,
|
|
is_intermediate=self.is_intermediate,
|
|
)
|
|
|
|
return ImageOutput(
|
|
image=ImageField(image_name=image_dto.image_name),
|
|
width=image_dto.width,
|
|
height=image_dto.height,
|
|
)
|
|
|
|
|
|
PIL_RESAMPLING_MODES = Literal[
|
|
"nearest",
|
|
"box",
|
|
"bilinear",
|
|
"hamming",
|
|
"bicubic",
|
|
"lanczos",
|
|
]
|
|
|
|
|
|
PIL_RESAMPLING_MAP = {
|
|
"nearest": Image.Resampling.NEAREST,
|
|
"box": Image.Resampling.BOX,
|
|
"bilinear": Image.Resampling.BILINEAR,
|
|
"hamming": Image.Resampling.HAMMING,
|
|
"bicubic": Image.Resampling.BICUBIC,
|
|
"lanczos": Image.Resampling.LANCZOS,
|
|
}
|
|
|
|
|
|
class ImageResizeInvocation(BaseInvocation, PILInvocationConfig):
|
|
"""Resizes an image to specific dimensions"""
|
|
|
|
# fmt: off
|
|
type: Literal["img_resize"] = "img_resize"
|
|
|
|
# Inputs
|
|
image: Optional[ImageField] = Field(default=None, description="The image to resize")
|
|
width: Union[int, None] = Field(ge=64, multiple_of=8, description="The width to resize to (px)")
|
|
height: Union[int, None] = Field(ge=64, multiple_of=8, description="The height to resize to (px)")
|
|
resample_mode: PIL_RESAMPLING_MODES = Field(default="bicubic", description="The resampling mode")
|
|
# fmt: on
|
|
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"title": "Resize Image",
|
|
"tags": ["image", "resize"]
|
|
},
|
|
}
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.services.images.get_pil_image(self.image.image_name)
|
|
|
|
resample_mode = PIL_RESAMPLING_MAP[self.resample_mode]
|
|
|
|
resize_image = image.resize(
|
|
(self.width, self.height),
|
|
resample=resample_mode,
|
|
)
|
|
|
|
image_dto = context.services.images.create(
|
|
image=resize_image,
|
|
image_origin=ResourceOrigin.INTERNAL,
|
|
image_category=ImageCategory.GENERAL,
|
|
node_id=self.id,
|
|
session_id=context.graph_execution_state_id,
|
|
is_intermediate=self.is_intermediate,
|
|
)
|
|
|
|
return ImageOutput(
|
|
image=ImageField(image_name=image_dto.image_name),
|
|
width=image_dto.width,
|
|
height=image_dto.height,
|
|
)
|
|
|
|
|
|
class ImageScaleInvocation(BaseInvocation, PILInvocationConfig):
|
|
"""Scales an image by a factor"""
|
|
|
|
# fmt: off
|
|
type: Literal["img_scale"] = "img_scale"
|
|
|
|
# Inputs
|
|
image: Optional[ImageField] = Field(default=None, description="The image to scale")
|
|
scale_factor: Optional[float] = Field(default=2.0, gt=0, description="The factor by which to scale the image")
|
|
resample_mode: PIL_RESAMPLING_MODES = Field(default="bicubic", description="The resampling mode")
|
|
# fmt: on
|
|
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"title": "Scale Image",
|
|
"tags": ["image", "scale"]
|
|
},
|
|
}
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.services.images.get_pil_image(self.image.image_name)
|
|
|
|
resample_mode = PIL_RESAMPLING_MAP[self.resample_mode]
|
|
width = int(image.width * self.scale_factor)
|
|
height = int(image.height * self.scale_factor)
|
|
|
|
resize_image = image.resize(
|
|
(width, height),
|
|
resample=resample_mode,
|
|
)
|
|
|
|
image_dto = context.services.images.create(
|
|
image=resize_image,
|
|
image_origin=ResourceOrigin.INTERNAL,
|
|
image_category=ImageCategory.GENERAL,
|
|
node_id=self.id,
|
|
session_id=context.graph_execution_state_id,
|
|
is_intermediate=self.is_intermediate,
|
|
)
|
|
|
|
return ImageOutput(
|
|
image=ImageField(image_name=image_dto.image_name),
|
|
width=image_dto.width,
|
|
height=image_dto.height,
|
|
)
|
|
|
|
|
|
class ImageLerpInvocation(BaseInvocation, PILInvocationConfig):
|
|
"""Linear interpolation of all pixels of an image"""
|
|
|
|
# fmt: off
|
|
type: Literal["img_lerp"] = "img_lerp"
|
|
|
|
# Inputs
|
|
image: Optional[ImageField] = Field(default=None, description="The image to lerp")
|
|
min: int = Field(default=0, ge=0, le=255, description="The minimum output value")
|
|
max: int = Field(default=255, ge=0, le=255, description="The maximum output value")
|
|
# fmt: on
|
|
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"title": "Image Linear Interpolation",
|
|
"tags": ["image", "linear", "interpolation", "lerp"]
|
|
},
|
|
}
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.services.images.get_pil_image(self.image.image_name)
|
|
|
|
image_arr = numpy.asarray(image, dtype=numpy.float32) / 255
|
|
image_arr = image_arr * (self.max - self.min) + self.max
|
|
|
|
lerp_image = Image.fromarray(numpy.uint8(image_arr))
|
|
|
|
image_dto = context.services.images.create(
|
|
image=lerp_image,
|
|
image_origin=ResourceOrigin.INTERNAL,
|
|
image_category=ImageCategory.GENERAL,
|
|
node_id=self.id,
|
|
session_id=context.graph_execution_state_id,
|
|
is_intermediate=self.is_intermediate,
|
|
)
|
|
|
|
return ImageOutput(
|
|
image=ImageField(image_name=image_dto.image_name),
|
|
width=image_dto.width,
|
|
height=image_dto.height,
|
|
)
|
|
|
|
|
|
class ImageInverseLerpInvocation(BaseInvocation, PILInvocationConfig):
|
|
"""Inverse linear interpolation of all pixels of an image"""
|
|
|
|
# fmt: off
|
|
type: Literal["img_ilerp"] = "img_ilerp"
|
|
|
|
# Inputs
|
|
image: Optional[ImageField] = Field(default=None, description="The image to lerp")
|
|
min: int = Field(default=0, ge=0, le=255, description="The minimum input value")
|
|
max: int = Field(default=255, ge=0, le=255, description="The maximum input value")
|
|
# fmt: on
|
|
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"title": "Image Inverse Linear Interpolation",
|
|
"tags": ["image", "linear", "interpolation", "inverse"]
|
|
},
|
|
}
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.services.images.get_pil_image(self.image.image_name)
|
|
|
|
image_arr = numpy.asarray(image, dtype=numpy.float32)
|
|
image_arr = (
|
|
numpy.minimum(
|
|
numpy.maximum(image_arr - self.min, 0) / float(self.max - self.min), 1
|
|
)
|
|
* 255
|
|
)
|
|
|
|
ilerp_image = Image.fromarray(numpy.uint8(image_arr))
|
|
|
|
image_dto = context.services.images.create(
|
|
image=ilerp_image,
|
|
image_origin=ResourceOrigin.INTERNAL,
|
|
image_category=ImageCategory.GENERAL,
|
|
node_id=self.id,
|
|
session_id=context.graph_execution_state_id,
|
|
is_intermediate=self.is_intermediate,
|
|
)
|
|
|
|
return ImageOutput(
|
|
image=ImageField(image_name=image_dto.image_name),
|
|
width=image_dto.width,
|
|
height=image_dto.height,
|
|
)
|
|
|
|
class MaskEdgeInvocation(BaseInvocation, PILInvocationConfig):
|
|
"""Applies an edge mask to an image"""
|
|
|
|
# fmt: off
|
|
type: Literal["mask_edge"] = "mask_edge"
|
|
|
|
# Inputs
|
|
image: Optional[ImageField] = Field(default=None, description="The image to apply the mask to")
|
|
edge_size: int = Field(description="The size of the edge")
|
|
edge_blur: int = Field(description="The amount of blur on the edge")
|
|
low_threshold: int = Field(description="First threshold for the hysteresis procedure in Canny edge detection")
|
|
high_threshold: int = Field(description="Second threshold for the hysteresis procedure in Canny edge detection")
|
|
# fmt: on
|
|
|
|
def invoke(self, context: InvocationContext) -> MaskOutput:
|
|
mask = context.services.images.get_pil_image(self.image.image_name)
|
|
|
|
npimg = numpy.asarray(mask, dtype=numpy.uint8)
|
|
npgradient = numpy.uint8(
|
|
255 * (1.0 - numpy.floor(numpy.abs(0.5 - numpy.float32(npimg) / 255.0) * 2.0))
|
|
)
|
|
npedge = cv2.Canny(npimg, threshold1=self.low_threshold, threshold2=self.high_threshold)
|
|
npmask = npgradient + npedge
|
|
npmask = cv2.dilate(
|
|
npmask, numpy.ones((3, 3), numpy.uint8), iterations=int(self.edge_size / 2)
|
|
)
|
|
|
|
new_mask = Image.fromarray(npmask)
|
|
|
|
if self.edge_blur > 0:
|
|
new_mask = new_mask.filter(ImageFilter.BoxBlur(self.edge_blur))
|
|
|
|
new_mask = ImageOps.invert(new_mask)
|
|
|
|
image_dto = context.services.images.create(
|
|
image=new_mask,
|
|
image_origin=ResourceOrigin.INTERNAL,
|
|
image_category=ImageCategory.MASK,
|
|
node_id=self.id,
|
|
session_id=context.graph_execution_state_id,
|
|
is_intermediate=self.is_intermediate,
|
|
)
|
|
|
|
return MaskOutput(
|
|
mask=ImageField(image_name=image_dto.image_name),
|
|
width=image_dto.width,
|
|
height=image_dto.height,
|
|
)
|
|
|
|
class ColorCorrectInvocation(BaseInvocation, PILInvocationConfig):
|
|
|
|
type: Literal["color_correct"] = "color_correct"
|
|
|
|
init: Optional[ImageField] = Field(default=None, description="Initial image")
|
|
result: Optional[ImageField] = Field(default=None, description="Resulted image")
|
|
mask: Optional[ImageField] = Field(default=None, description="Mask image")
|
|
mask_blur_radius: float = Field(default=8, description="Mask blur radius")
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
pil_init_mask = None
|
|
if self.mask is not None:
|
|
pil_init_mask = context.services.images.get_pil_image(
|
|
self.mask.image_name
|
|
).convert("L")
|
|
|
|
init_image = context.services.images.get_pil_image(
|
|
self.init.image_name
|
|
)
|
|
|
|
result = context.services.images.get_pil_image(
|
|
self.result.image_name
|
|
).convert("RGBA")
|
|
|
|
|
|
#if init_image is None or init_mask is None:
|
|
# return result
|
|
|
|
# Get the original alpha channel of the mask if there is one.
|
|
# Otherwise it is some other black/white image format ('1', 'L' or 'RGB')
|
|
#pil_init_mask = (
|
|
# init_mask.getchannel("A")
|
|
# if init_mask.mode == "RGBA"
|
|
# else init_mask.convert("L")
|
|
#)
|
|
pil_init_image = init_image.convert(
|
|
"RGBA"
|
|
) # Add an alpha channel if one doesn't exist
|
|
|
|
# Build an image with only visible pixels from source to use as reference for color-matching.
|
|
init_rgb_pixels = numpy.asarray(init_image.convert("RGB"), dtype=numpy.uint8)
|
|
init_a_pixels = numpy.asarray(pil_init_image.getchannel("A"), dtype=numpy.uint8)
|
|
init_mask_pixels = numpy.asarray(pil_init_mask, dtype=numpy.uint8)
|
|
|
|
# Get numpy version of result
|
|
np_image = numpy.asarray(result.convert("RGB"), dtype=numpy.uint8)
|
|
|
|
# Mask and calculate mean and standard deviation
|
|
mask_pixels = init_a_pixels * init_mask_pixels > 0
|
|
np_init_rgb_pixels_masked = init_rgb_pixels[mask_pixels, :]
|
|
np_image_masked = np_image[mask_pixels, :]
|
|
|
|
if np_init_rgb_pixels_masked.size > 0:
|
|
init_means = np_init_rgb_pixels_masked.mean(axis=0)
|
|
init_std = np_init_rgb_pixels_masked.std(axis=0)
|
|
gen_means = np_image_masked.mean(axis=0)
|
|
gen_std = np_image_masked.std(axis=0)
|
|
|
|
# Color correct
|
|
np_matched_result = np_image.copy()
|
|
np_matched_result[:, :, :] = (
|
|
(
|
|
(
|
|
(
|
|
np_matched_result[:, :, :].astype(numpy.float32)
|
|
- gen_means[None, None, :]
|
|
)
|
|
/ gen_std[None, None, :]
|
|
)
|
|
* init_std[None, None, :]
|
|
+ init_means[None, None, :]
|
|
)
|
|
.clip(0, 255)
|
|
.astype(numpy.uint8)
|
|
)
|
|
matched_result = Image.fromarray(np_matched_result, mode="RGB")
|
|
else:
|
|
matched_result = Image.fromarray(np_image, mode="RGB")
|
|
|
|
# Blur the mask out (into init image) by specified amount
|
|
if self.mask_blur_radius > 0:
|
|
nm = numpy.asarray(pil_init_mask, dtype=numpy.uint8)
|
|
nmd = cv2.erode(
|
|
nm,
|
|
kernel=numpy.ones((3, 3), dtype=numpy.uint8),
|
|
iterations=int(self.mask_blur_radius / 2),
|
|
)
|
|
pmd = Image.fromarray(nmd, mode="L")
|
|
blurred_init_mask = pmd.filter(ImageFilter.BoxBlur(self.mask_blur_radius))
|
|
else:
|
|
blurred_init_mask = pil_init_mask
|
|
|
|
|
|
multiplied_blurred_init_mask = ImageChops.multiply(
|
|
blurred_init_mask, result.split()[-1]
|
|
)
|
|
|
|
# Paste original on color-corrected generation (using blurred mask)
|
|
matched_result.paste(init_image, (0, 0), mask=multiplied_blurred_init_mask)
|
|
|
|
image_dto = context.services.images.create(
|
|
image=matched_result,
|
|
image_origin=ResourceOrigin.INTERNAL,
|
|
image_category=ImageCategory.GENERAL,
|
|
node_id=self.id,
|
|
session_id=context.graph_execution_state_id,
|
|
is_intermediate=self.is_intermediate,
|
|
)
|
|
|
|
return ImageOutput(
|
|
image=ImageField(image_name=image_dto.image_name),
|
|
width=image_dto.width,
|
|
height=image_dto.height,
|
|
)
|