InvokeAI/invokeai/app/invocations/infill.py
psychedelicious a1773197e9 feat(nodes): remove image_origin from most places
- remove `image_origin` from most places where we interact with images
- consolidate image file storage into a single `images/` dir

Images have an `image_origin` attribute but it is not actually used when retrieving images, nor will it ever be. It is still used when creating images and helps to differentiate between internally generated images and uploads.

It was included in eg API routes and image service methods as a holdover from the previous app implementation where images were not managed in a database. Now that we have images in a db, we can do away with this and simplify basically everything that touches images.

The one potentially controversial change is to no longer separate internal and external images on disk. If we retain this separation, we have to keep `image_origin` around in a number of spots and it getting image paths on disk painful.

So, I am have gotten rid of this organisation. Images are now all stored in `images`, regardless of their origin. As we improve the image management features, this change will hopefully become transparent.
2023-06-14 23:08:27 +10:00

231 lines
7.2 KiB
Python

# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
from typing import Literal, Union, get_args
import numpy as np
import math
from PIL import Image, ImageOps
from pydantic import Field
from invokeai.app.invocations.image import ImageOutput
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from invokeai.backend.image_util.patchmatch import PatchMatch
from ..models.image import ColorField, ImageCategory, ImageField, ResourceOrigin
from .baseinvocation import (
BaseInvocation,
InvocationContext,
)
def infill_methods() -> list[str]:
methods = [
"tile",
"solid",
]
if PatchMatch.patchmatch_available():
methods.insert(0, "patchmatch")
return methods
INFILL_METHODS = Literal[tuple(infill_methods())]
DEFAULT_INFILL_METHOD = (
"patchmatch" if "patchmatch" in get_args(INFILL_METHODS) else "tile"
)
def infill_patchmatch(im: Image.Image) -> Image.Image:
if im.mode != "RGBA":
return im
# Skip patchmatch if patchmatch isn't available
if not PatchMatch.patchmatch_available():
return im
# Patchmatch (note, we may want to expose patch_size? Increasing it significantly impacts performance though)
im_patched_np = PatchMatch.inpaint(
im.convert("RGB"), ImageOps.invert(im.split()[-1]), patch_size=3
)
im_patched = Image.fromarray(im_patched_np, mode="RGB")
return im_patched
def get_tile_images(image: np.ndarray, width=8, height=8):
_nrows, _ncols, depth = image.shape
_strides = image.strides
nrows, _m = divmod(_nrows, height)
ncols, _n = divmod(_ncols, width)
if _m != 0 or _n != 0:
return None
return np.lib.stride_tricks.as_strided(
np.ravel(image),
shape=(nrows, ncols, height, width, depth),
strides=(height * _strides[0], width * _strides[1], *_strides),
writeable=False,
)
def tile_fill_missing(
im: Image.Image, tile_size: int = 16, seed: Union[int, None] = None
) -> Image.Image:
# Only fill if there's an alpha layer
if im.mode != "RGBA":
return im
a = np.asarray(im, dtype=np.uint8)
tile_size_tuple = (tile_size, tile_size)
# Get the image as tiles of a specified size
tiles = get_tile_images(a, *tile_size_tuple).copy()
# Get the mask as tiles
tiles_mask = tiles[:, :, :, :, 3]
# Find any mask tiles with any fully transparent pixels (we will be replacing these later)
tmask_shape = tiles_mask.shape
tiles_mask = tiles_mask.reshape(math.prod(tiles_mask.shape))
n, ny = (math.prod(tmask_shape[0:2])), math.prod(tmask_shape[2:])
tiles_mask = tiles_mask > 0
tiles_mask = tiles_mask.reshape((n, ny)).all(axis=1)
# Get RGB tiles in single array and filter by the mask
tshape = tiles.shape
tiles_all = tiles.reshape((math.prod(tiles.shape[0:2]), *tiles.shape[2:]))
filtered_tiles = tiles_all[tiles_mask]
if len(filtered_tiles) == 0:
return im
# Find all invalid tiles and replace with a random valid tile
replace_count = (tiles_mask == False).sum()
rng = np.random.default_rng(seed=seed)
tiles_all[np.logical_not(tiles_mask)] = filtered_tiles[
rng.choice(filtered_tiles.shape[0], replace_count), :, :, :
]
# Convert back to an image
tiles_all = tiles_all.reshape(tshape)
tiles_all = tiles_all.swapaxes(1, 2)
st = tiles_all.reshape(
(
math.prod(tiles_all.shape[0:2]),
math.prod(tiles_all.shape[2:4]),
tiles_all.shape[4],
)
)
si = Image.fromarray(st, mode="RGBA")
return si
class InfillColorInvocation(BaseInvocation):
"""Infills transparent areas of an image with a solid color"""
type: Literal["infill_rgba"] = "infill_rgba"
image: Union[ImageField, None] = Field(
default=None, description="The image to infill"
)
color: ColorField = Field(
default=ColorField(r=127, g=127, b=127, a=255),
description="The color to use to infill",
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
solid_bg = Image.new("RGBA", image.size, self.color.tuple())
infilled = Image.alpha_composite(solid_bg, image.convert("RGBA"))
infilled.paste(image, (0, 0), image.split()[-1])
image_dto = context.services.images.create(
image=infilled,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class InfillTileInvocation(BaseInvocation):
"""Infills transparent areas of an image with tiles of the image"""
type: Literal["infill_tile"] = "infill_tile"
image: Union[ImageField, None] = Field(
default=None, description="The image to infill"
)
tile_size: int = Field(default=32, ge=1, description="The tile size (px)")
seed: int = Field(
ge=0,
le=SEED_MAX,
description="The seed to use for tile generation (omit for random)",
default_factory=get_random_seed,
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
infilled = tile_fill_missing(
image.copy(), seed=self.seed, tile_size=self.tile_size
)
infilled.paste(image, (0, 0), image.split()[-1])
image_dto = context.services.images.create(
image=infilled,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class InfillPatchMatchInvocation(BaseInvocation):
"""Infills transparent areas of an image using the PatchMatch algorithm"""
type: Literal["infill_patchmatch"] = "infill_patchmatch"
image: Union[ImageField, None] = Field(
default=None, description="The image to infill"
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
if PatchMatch.patchmatch_available():
infilled = infill_patchmatch(image.copy())
else:
raise ValueError("PatchMatch is not available on this system")
image_dto = context.services.images.create(
image=infilled,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)