InvokeAI/ldm/gfpgan/gfpgan_tools.py

168 lines
5.0 KiB
Python

import torch
import warnings
import os
import sys
import numpy as np
from PIL import Image
from scripts.dream import create_argv_parser
arg_parser = create_argv_parser()
opt = arg_parser.parse_args()
model_path = os.path.join(opt.gfpgan_dir, opt.gfpgan_model_path)
gfpgan_model_exists = os.path.isfile(model_path)
def run_gfpgan(image, strength, seed, upsampler_scale=4):
print(f'>> GFPGAN - Restoring Faces for image seed:{seed}')
gfpgan = None
with warnings.catch_warnings():
warnings.filterwarnings('ignore', category=DeprecationWarning)
warnings.filterwarnings('ignore', category=UserWarning)
try:
if not gfpgan_model_exists:
raise Exception('GFPGAN model not found at path ' + model_path)
sys.path.append(os.path.abspath(opt.gfpgan_dir))
from gfpgan import GFPGANer
bg_upsampler = _load_gfpgan_bg_upsampler(
opt.gfpgan_bg_upsampler, upsampler_scale, opt.gfpgan_bg_tile
)
gfpgan = GFPGANer(
model_path=model_path,
upscale=upsampler_scale,
arch='clean',
channel_multiplier=2,
bg_upsampler=bg_upsampler,
)
except Exception:
import traceback
print('>> Error loading GFPGAN:', file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
if gfpgan is None:
print(
f'>> WARNING: GFPGAN not initialized.'
)
print(
f'>> Download https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth to {model_path}, \nor change GFPGAN directory with --gfpgan_dir.'
)
return image
image = image.convert('RGB')
cropped_faces, restored_faces, restored_img = gfpgan.enhance(
np.array(image, dtype=np.uint8),
has_aligned=False,
only_center_face=False,
paste_back=True,
)
res = Image.fromarray(restored_img)
if strength < 1.0:
# Resize the image to the new image if the sizes have changed
if restored_img.size != image.size:
image = image.resize(res.size)
res = Image.blend(image, res, strength)
if torch.cuda.is_available():
torch.cuda.empty_cache()
gfpgan = None
return res
def _load_gfpgan_bg_upsampler(bg_upsampler, upsampler_scale, bg_tile=400):
if bg_upsampler == 'realesrgan':
if not torch.cuda.is_available(): # CPU or MPS on M1
use_half_precision = False
else:
use_half_precision = True
model_path = {
2: 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth',
4: 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth',
}
if upsampler_scale not in model_path:
return None
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
if upsampler_scale == 4:
model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=4,
)
if upsampler_scale == 2:
model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=2,
)
bg_upsampler = RealESRGANer(
scale=upsampler_scale,
model_path=model_path[upsampler_scale],
model=model,
tile=bg_tile,
tile_pad=10,
pre_pad=0,
half=use_half_precision,
)
else:
bg_upsampler = None
return bg_upsampler
def real_esrgan_upscale(image, strength, upsampler_scale, seed):
print(
f'>> Real-ESRGAN Upscaling seed:{seed} : scale:{upsampler_scale}x'
)
with warnings.catch_warnings():
warnings.filterwarnings('ignore', category=DeprecationWarning)
warnings.filterwarnings('ignore', category=UserWarning)
try:
upsampler = _load_gfpgan_bg_upsampler(
opt.gfpgan_bg_upsampler, upsampler_scale, opt.gfpgan_bg_tile
)
except Exception:
import traceback
print('>> Error loading Real-ESRGAN:', file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
output, img_mode = upsampler.enhance(
np.array(image, dtype=np.uint8),
outscale=upsampler_scale,
alpha_upsampler=opt.gfpgan_bg_upsampler,
)
res = Image.fromarray(output)
if strength < 1.0:
# Resize the image to the new image if the sizes have changed
if output.size != image.size:
image = image.resize(res.size)
res = Image.blend(image, res, strength)
if torch.cuda.is_available():
torch.cuda.empty_cache()
upsampler = None
return res