InvokeAI/invokeai/backend/config/invokeai_configure.py

869 lines
29 KiB
Python
Executable File

#!/usr/bin/env python
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
# Before running stable-diffusion on an internet-isolated machine,
# run this script from one with internet connectivity. The
# two machines must share a common .cache directory.
#
# Coauthor: Kevin Turner http://github.com/keturn
#
import sys
print("Loading Python libraries...\n",file=sys.stderr)
import argparse
import io
import os
import re
import shutil
import traceback
import warnings
from argparse import Namespace
from pathlib import Path
from shutil import get_terminal_size
from typing import get_type_hints
from urllib import request
import npyscreen
import transformers
from diffusers import AutoencoderKL
from huggingface_hub import HfFolder
from huggingface_hub import login as hf_hub_login
from omegaconf import OmegaConf
from tqdm import tqdm
from transformers import (
AutoProcessor,
CLIPSegForImageSegmentation,
CLIPTextModel,
CLIPTokenizer,
)
import invokeai.configs as configs
from invokeai.frontend.install.model_install import addModelsForm, process_and_execute
from invokeai.frontend.install.widgets import (
CenteredButtonPress,
IntTitleSlider,
set_min_terminal_size,
)
from invokeai.backend.config.legacy_arg_parsing import legacy_parser
from invokeai.backend.config.model_install_backend import (
default_dataset,
download_from_hf,
hf_download_with_resume,
recommended_datasets,
)
from invokeai.app.services.config import InvokeAIAppConfig
warnings.filterwarnings("ignore")
transformers.logging.set_verbosity_error()
# --------------------------globals-----------------------
config = InvokeAIAppConfig.get_config()
Model_dir = "models"
Weights_dir = "ldm/stable-diffusion-v1/"
# the initial "configs" dir is now bundled in the `invokeai.configs` package
Dataset_path = Path(configs.__path__[0]) / "INITIAL_MODELS.yaml"
Default_config_file = config.model_conf_path
SD_Configs = config.legacy_conf_path
Datasets = OmegaConf.load(Dataset_path)
# minimum size for the UI
MIN_COLS = 135
MIN_LINES = 45
PRECISION_CHOICES = ['auto','float16','float32','autocast']
INIT_FILE_PREAMBLE = """# InvokeAI initialization file
# This is the InvokeAI initialization file, which contains command-line default values.
# Feel free to edit. If anything goes wrong, you can re-initialize this file by deleting
# or renaming it and then running invokeai-configure again.
"""
# --------------------------------------------
def postscript(errors: None):
if not any(errors):
message = f"""
** INVOKEAI INSTALLATION SUCCESSFUL **
If you installed manually from source or with 'pip install': activate the virtual environment
then run one of the following commands to start InvokeAI.
Web UI:
invokeai-web
Command-line client:
invokeai
If you installed using an installation script, run:
{config.root}/invoke.{"bat" if sys.platform == "win32" else "sh"}
Add the '--help' argument to see all of the command-line switches available for use.
"""
else:
message = "\n** There were errors during installation. It is possible some of the models were not fully downloaded.\n"
for err in errors:
message += f"\t - {err}\n"
message += "Please check the logs above and correct any issues."
print(message)
# ---------------------------------------------
def yes_or_no(prompt: str, default_yes=True):
default = "y" if default_yes else "n"
response = input(f"{prompt} [{default}] ") or default
if default_yes:
return response[0] not in ("n", "N")
else:
return response[0] in ("y", "Y")
# ---------------------------------------------
def HfLogin(access_token) -> str:
"""
Helper for logging in to Huggingface
The stdout capture is needed to hide the irrelevant "git credential helper" warning
"""
capture = io.StringIO()
sys.stdout = capture
try:
hf_hub_login(token=access_token, add_to_git_credential=False)
sys.stdout = sys.__stdout__
except Exception as exc:
sys.stdout = sys.__stdout__
print(exc)
raise exc
# -------------------------------------
class ProgressBar:
def __init__(self, model_name="file"):
self.pbar = None
self.name = model_name
def __call__(self, block_num, block_size, total_size):
if not self.pbar:
self.pbar = tqdm(
desc=self.name,
initial=0,
unit="iB",
unit_scale=True,
unit_divisor=1000,
total=total_size,
)
self.pbar.update(block_size)
# ---------------------------------------------
def download_with_progress_bar(model_url: str, model_dest: str, label: str = "the"):
try:
print(f"Installing {label} model file {model_url}...", end="", file=sys.stderr)
if not os.path.exists(model_dest):
os.makedirs(os.path.dirname(model_dest), exist_ok=True)
request.urlretrieve(
model_url, model_dest, ProgressBar(os.path.basename(model_dest))
)
print("...downloaded successfully", file=sys.stderr)
else:
print("...exists", file=sys.stderr)
except Exception:
print("...download failed", file=sys.stderr)
print(f"Error downloading {label} model", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
# ---------------------------------------------
# this will preload the Bert tokenizer fles
def download_bert():
print("Installing bert tokenizer...", file=sys.stderr)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
from transformers import BertTokenizerFast
download_from_hf(BertTokenizerFast, "bert-base-uncased")
# ---------------------------------------------
def download_sd1_clip():
print("Installing SD1 clip model...", file=sys.stderr)
version = "openai/clip-vit-large-patch14"
download_from_hf(CLIPTokenizer, version)
download_from_hf(CLIPTextModel, version)
# ---------------------------------------------
def download_sd2_clip():
version = "stabilityai/stable-diffusion-2"
print("Installing SD2 clip model...", file=sys.stderr)
download_from_hf(CLIPTokenizer, version, subfolder="tokenizer")
download_from_hf(CLIPTextModel, version, subfolder="text_encoder")
# ---------------------------------------------
def download_realesrgan():
print("Installing models from RealESRGAN...", file=sys.stderr)
model_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth"
wdn_model_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth"
model_dest = os.path.join(
config.root, "models/realesrgan/realesr-general-x4v3.pth"
)
wdn_model_dest = os.path.join(
config.root, "models/realesrgan/realesr-general-wdn-x4v3.pth"
)
download_with_progress_bar(model_url, model_dest, "RealESRGAN")
download_with_progress_bar(wdn_model_url, wdn_model_dest, "RealESRGANwdn")
def download_gfpgan():
print("Installing GFPGAN models...", file=sys.stderr)
for model in (
[
"https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth",
"./models/gfpgan/GFPGANv1.4.pth",
],
[
"https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth",
"./models/gfpgan/weights/detection_Resnet50_Final.pth",
],
[
"https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth",
"./models/gfpgan/weights/parsing_parsenet.pth",
],
):
model_url, model_dest = model[0], os.path.join(config.root, model[1])
download_with_progress_bar(model_url, model_dest, "GFPGAN weights")
# ---------------------------------------------
def download_codeformer():
print("Installing CodeFormer model file...", file=sys.stderr)
model_url = (
"https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth"
)
model_dest = os.path.join(config.root, "models/codeformer/codeformer.pth")
download_with_progress_bar(model_url, model_dest, "CodeFormer")
# ---------------------------------------------
def download_clipseg():
print("Installing clipseg model for text-based masking...", file=sys.stderr)
CLIPSEG_MODEL = "CIDAS/clipseg-rd64-refined"
try:
download_from_hf(AutoProcessor, CLIPSEG_MODEL)
download_from_hf(CLIPSegForImageSegmentation, CLIPSEG_MODEL)
except Exception:
print("Error installing clipseg model:")
print(traceback.format_exc())
# -------------------------------------
def download_safety_checker():
print("Installing model for NSFW content detection...", file=sys.stderr)
try:
from diffusers.pipelines.stable_diffusion.safety_checker import (
StableDiffusionSafetyChecker,
)
from transformers import AutoFeatureExtractor
except ModuleNotFoundError:
print("Error installing NSFW checker model:")
print(traceback.format_exc())
return
safety_model_id = "CompVis/stable-diffusion-safety-checker"
print("AutoFeatureExtractor...", file=sys.stderr)
download_from_hf(AutoFeatureExtractor, safety_model_id)
print("StableDiffusionSafetyChecker...", file=sys.stderr)
download_from_hf(StableDiffusionSafetyChecker, safety_model_id)
# -------------------------------------
def download_vaes():
print("Installing stabilityai VAE...", file=sys.stderr)
try:
# first the diffusers version
repo_id = "stabilityai/sd-vae-ft-mse"
args = dict(
cache_dir=config.cache_dir,
)
if not AutoencoderKL.from_pretrained(repo_id, **args):
raise Exception(f"download of {repo_id} failed")
repo_id = "stabilityai/sd-vae-ft-mse-original"
model_name = "vae-ft-mse-840000-ema-pruned.ckpt"
# next the legacy checkpoint version
if not hf_download_with_resume(
repo_id=repo_id,
model_name=model_name,
model_dir=str(config.root / Model_dir / Weights_dir),
):
raise Exception(f"download of {model_name} failed")
except Exception as e:
print(f"Error downloading StabilityAI standard VAE: {str(e)}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
# -------------------------------------
def get_root(root: str = None) -> str:
if root:
return root
elif os.environ.get("INVOKEAI_ROOT"):
return os.environ.get("INVOKEAI_ROOT")
else:
return config.root
# -------------------------------------
class editOptsForm(npyscreen.FormMultiPage):
# for responsive resizing - disabled
# FIX_MINIMUM_SIZE_WHEN_CREATED = False
def create(self):
program_opts = self.parentApp.program_opts
old_opts = self.parentApp.invokeai_opts
first_time = not (config.root / 'invokeai.yaml').exists()
access_token = HfFolder.get_token()
window_width, window_height = get_terminal_size()
for i in [
"Configure startup settings. You can come back and change these later.",
"Use ctrl-N and ctrl-P to move to the <N>ext and <P>revious fields.",
"Use cursor arrows to make a checkbox selection, and space to toggle.",
]:
self.add_widget_intelligent(
npyscreen.FixedText,
value=i,
editable=False,
color="CONTROL",
)
self.nextrely += 1
self.add_widget_intelligent(
npyscreen.TitleFixedText,
name="== BASIC OPTIONS ==",
begin_entry_at=0,
editable=False,
color="CONTROL",
scroll_exit=True,
)
self.nextrely -= 1
self.add_widget_intelligent(
npyscreen.FixedText,
value="Select an output directory for images:",
editable=False,
color="CONTROL",
)
self.outdir = self.add_widget_intelligent(
npyscreen.TitleFilename,
name="(<tab> autocompletes, ctrl-N advances):",
value=str(old_opts.outdir) or str(default_output_dir()),
select_dir=True,
must_exist=False,
use_two_lines=False,
labelColor="GOOD",
begin_entry_at=40,
scroll_exit=True,
)
self.nextrely += 1
self.add_widget_intelligent(
npyscreen.FixedText,
value="Activate the NSFW checker to blur images showing potential sexual imagery:",
editable=False,
color="CONTROL",
)
self.nsfw_checker = self.add_widget_intelligent(
npyscreen.Checkbox,
name="NSFW checker",
value=old_opts.nsfw_checker,
relx=5,
scroll_exit=True,
)
self.nextrely += 1
for i in [
"If you have an account at HuggingFace you may optionally paste your access token here",
'to allow InvokeAI to download restricted styles & subjects from the "Concept Library".',
"See https://huggingface.co/settings/tokens",
]:
self.add_widget_intelligent(
npyscreen.FixedText,
value=i,
editable=False,
color="CONTROL",
)
self.hf_token = self.add_widget_intelligent(
npyscreen.TitlePassword,
name="Access Token (ctrl-shift-V pastes):",
value=access_token,
begin_entry_at=42,
use_two_lines=False,
scroll_exit=True,
)
self.nextrely += 1
self.add_widget_intelligent(
npyscreen.TitleFixedText,
name="== ADVANCED OPTIONS ==",
begin_entry_at=0,
editable=False,
color="CONTROL",
scroll_exit=True,
)
self.nextrely -= 1
self.add_widget_intelligent(
npyscreen.TitleFixedText,
name="GPU Management",
begin_entry_at=0,
editable=False,
color="CONTROL",
scroll_exit=True,
)
self.nextrely -= 1
self.free_gpu_mem = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Free GPU memory after each generation",
value=old_opts.free_gpu_mem,
relx=5,
scroll_exit=True,
)
self.xformers_enabled = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Enable xformers support if available",
value=old_opts.xformers_enabled,
relx=5,
scroll_exit=True,
)
self.always_use_cpu = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Force CPU to be used on GPU systems",
value=old_opts.always_use_cpu,
relx=5,
scroll_exit=True,
)
precision = old_opts.precision or (
"float32" if program_opts.full_precision else "auto"
)
self.precision = self.add_widget_intelligent(
npyscreen.TitleSelectOne,
name="Precision",
values=PRECISION_CHOICES,
value=PRECISION_CHOICES.index(precision),
begin_entry_at=3,
max_height=len(PRECISION_CHOICES) + 1,
scroll_exit=True,
)
self.max_loaded_models = self.add_widget_intelligent(
IntTitleSlider,
name="Number of models to cache in CPU memory (each will use 2-4 GB!)",
value=old_opts.max_loaded_models,
out_of=10,
lowest=1,
begin_entry_at=4,
scroll_exit=True,
)
self.nextrely += 1
self.add_widget_intelligent(
npyscreen.FixedText,
value="Directories containing textual inversion and LoRA models (<tab> autocompletes, ctrl-N advances):",
editable=False,
color="CONTROL",
)
self.embedding_dir = self.add_widget_intelligent(
npyscreen.TitleFilename,
name=" Textual Inversion Embeddings:",
value=str(default_embedding_dir()),
select_dir=True,
must_exist=False,
use_two_lines=False,
labelColor="GOOD",
begin_entry_at=32,
scroll_exit=True,
)
self.lora_dir = self.add_widget_intelligent(
npyscreen.TitleFilename,
name=" LoRA and LyCORIS:",
value=str(default_lora_dir()),
select_dir=True,
must_exist=False,
use_two_lines=False,
labelColor="GOOD",
begin_entry_at=32,
scroll_exit=True,
)
self.nextrely += 1
self.add_widget_intelligent(
npyscreen.TitleFixedText,
name="== LICENSE ==",
begin_entry_at=0,
editable=False,
color="CONTROL",
scroll_exit=True,
)
self.nextrely -= 1
for i in [
"BY DOWNLOADING THE STABLE DIFFUSION WEIGHT FILES, YOU AGREE TO HAVE READ",
"AND ACCEPTED THE CREATIVEML RESPONSIBLE AI LICENSE LOCATED AT",
"https://huggingface.co/spaces/CompVis/stable-diffusion-license",
]:
self.add_widget_intelligent(
npyscreen.FixedText,
value=i,
editable=False,
color="CONTROL",
)
self.license_acceptance = self.add_widget_intelligent(
npyscreen.Checkbox,
name="I accept the CreativeML Responsible AI License",
value=not first_time,
relx=2,
scroll_exit=True,
)
self.nextrely += 1
label = (
"DONE"
if program_opts.skip_sd_weights or program_opts.default_only
else "NEXT"
)
self.ok_button = self.add_widget_intelligent(
CenteredButtonPress,
name=label,
relx=(window_width - len(label)) // 2,
rely=-3,
when_pressed_function=self.on_ok,
)
def on_ok(self):
options = self.marshall_arguments()
if self.validate_field_values(options):
self.parentApp.new_opts = options
if hasattr(self.parentApp, "model_select"):
self.parentApp.setNextForm("MODELS")
else:
self.parentApp.setNextForm(None)
self.editing = False
else:
self.editing = True
def validate_field_values(self, opt: Namespace) -> bool:
bad_fields = []
if not opt.license_acceptance:
bad_fields.append(
"Please accept the license terms before proceeding to model downloads"
)
if not Path(opt.outdir).parent.exists():
bad_fields.append(
f"The output directory does not seem to be valid. Please check that {str(Path(opt.outdir).parent)} is an existing directory."
)
if not Path(opt.embedding_dir).parent.exists():
bad_fields.append(
f"The embedding directory does not seem to be valid. Please check that {str(Path(opt.embedding_dir).parent)} is an existing directory."
)
if len(bad_fields) > 0:
message = "The following problems were detected and must be corrected:\n"
for problem in bad_fields:
message += f"* {problem}\n"
npyscreen.notify_confirm(message)
return False
else:
return True
def marshall_arguments(self):
new_opts = Namespace()
for attr in [
"outdir",
"nsfw_checker",
"free_gpu_mem",
"max_loaded_models",
"xformers_enabled",
"always_use_cpu",
"embedding_dir",
"lora_dir",
]:
setattr(new_opts, attr, getattr(self, attr).value)
new_opts.hf_token = self.hf_token.value
new_opts.license_acceptance = self.license_acceptance.value
new_opts.precision = PRECISION_CHOICES[self.precision.value[0]]
# widget library workaround to make max_loaded_models an int rather than a float
new_opts.max_loaded_models = int(new_opts.max_loaded_models)
return new_opts
class EditOptApplication(npyscreen.NPSAppManaged):
def __init__(self, program_opts: Namespace, invokeai_opts: Namespace):
super().__init__()
self.program_opts = program_opts
self.invokeai_opts = invokeai_opts
self.user_cancelled = False
self.user_selections = default_user_selections(program_opts)
def onStart(self):
npyscreen.setTheme(npyscreen.Themes.DefaultTheme)
self.options = self.addForm(
"MAIN",
editOptsForm,
name="InvokeAI Startup Options",
)
if not (self.program_opts.skip_sd_weights or self.program_opts.default_only):
self.model_select = self.addForm(
"MODELS",
addModelsForm,
name="Install Stable Diffusion Models",
multipage=True,
)
def new_opts(self):
return self.options.marshall_arguments()
def edit_opts(program_opts: Namespace, invokeai_opts: Namespace) -> argparse.Namespace:
editApp = EditOptApplication(program_opts, invokeai_opts)
editApp.run()
return editApp.new_opts()
def default_startup_options(init_file: Path) -> Namespace:
opts = InvokeAIAppConfig.get_config()
outdir = Path(opts.outdir)
if not outdir.is_absolute():
opts.outdir = str(config.root / opts.outdir)
if not init_file.exists():
opts.nsfw_checker = True
return opts
def default_user_selections(program_opts: Namespace) -> Namespace:
return Namespace(
starter_models=default_dataset()
if program_opts.default_only
else recommended_datasets()
if program_opts.yes_to_all
else dict(),
purge_deleted_models=False,
scan_directory=None,
autoscan_on_startup=None,
import_model_paths=None,
convert_to_diffusers=None,
)
# -------------------------------------
def initialize_rootdir(root: str, yes_to_all: bool = False):
print("** INITIALIZING INVOKEAI RUNTIME DIRECTORY **")
for name in (
"models",
"configs",
"embeddings",
"text-inversion-output",
"text-inversion-training-data",
):
os.makedirs(os.path.join(root, name), exist_ok=True)
configs_src = Path(configs.__path__[0])
configs_dest = Path(root) / "configs"
if not os.path.samefile(configs_src, configs_dest):
shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True)
# -------------------------------------
def run_console_ui(
program_opts: Namespace, initfile: Path = None
) -> (Namespace, Namespace):
# parse_args() will read from init file if present
invokeai_opts = default_startup_options(initfile)
set_min_terminal_size(MIN_COLS, MIN_LINES)
editApp = EditOptApplication(program_opts, invokeai_opts)
editApp.run()
if editApp.user_cancelled:
return (None, None)
else:
return (editApp.new_opts, editApp.user_selections)
# -------------------------------------
def write_opts(opts: Namespace, init_file: Path):
"""
Update the invokeai.yaml file with values from current settings.
"""
# this will load current settings
config = InvokeAIAppConfig.get_config()
for key,value in opts.__dict__.items():
if hasattr(config,key):
setattr(config,key,value)
with open(init_file,'w', encoding='utf-8') as file:
file.write(config.to_yaml())
# -------------------------------------
def default_output_dir() -> Path:
return config.root / "outputs"
# -------------------------------------
def default_embedding_dir() -> Path:
return config.root / "embeddings"
# -------------------------------------
def default_lora_dir() -> Path:
return config.root / "loras"
# -------------------------------------
def write_default_options(program_opts: Namespace, initfile: Path):
opt = default_startup_options(initfile)
write_opts(opt, initfile)
# -------------------------------------
# Here we bring in
# the legacy Args object in order to parse
# the old init file and write out the new
# yaml format.
def migrate_init_file(legacy_format:Path):
old = legacy_parser.parse_args([f'@{str(legacy_format)}'])
new = InvokeAIAppConfig.get_config()
fields = list(get_type_hints(InvokeAIAppConfig).keys())
for attr in fields:
if hasattr(old,attr):
setattr(new,attr,getattr(old,attr))
# a few places where the field names have changed and we have to
# manually add in the new names/values
new.nsfw_checker = old.safety_checker
new.xformers_enabled = old.xformers
new.conf_path = old.conf
new.embedding_dir = old.embedding_path
invokeai_yaml = legacy_format.parent / 'invokeai.yaml'
with open(invokeai_yaml,"w", encoding="utf-8") as outfile:
outfile.write(new.to_yaml())
legacy_format.replace(legacy_format.parent / 'invokeai.init.old')
# -------------------------------------
def main():
parser = argparse.ArgumentParser(description="InvokeAI model downloader")
parser.add_argument(
"--skip-sd-weights",
dest="skip_sd_weights",
action=argparse.BooleanOptionalAction,
default=False,
help="skip downloading the large Stable Diffusion weight files",
)
parser.add_argument(
"--skip-support-models",
dest="skip_support_models",
action=argparse.BooleanOptionalAction,
default=False,
help="skip downloading the support models",
)
parser.add_argument(
"--full-precision",
dest="full_precision",
action=argparse.BooleanOptionalAction,
type=bool,
default=False,
help="use 32-bit weights instead of faster 16-bit weights",
)
parser.add_argument(
"--yes",
"-y",
dest="yes_to_all",
action="store_true",
help='answer "yes" to all prompts',
)
parser.add_argument(
"--default_only",
action="store_true",
help="when --yes specified, only install the default model",
)
parser.add_argument(
"--config_file",
"-c",
dest="config_file",
type=str,
default=None,
help="path to configuration file to create",
)
parser.add_argument(
"--root_dir",
dest="root",
type=str,
default=None,
help="path to root of install directory",
)
opt = parser.parse_args()
# setting a global here
global config
config.root = Path(os.path.expanduser(get_root(opt.root) or ""))
errors = set()
try:
models_to_download = default_user_selections(opt)
# We check for to see if the runtime directory is correctly initialized.
old_init_file = Path(config.root, 'invokeai.init')
new_init_file = Path(config.root, 'invokeai.yaml')
if old_init_file.exists() and not new_init_file.exists():
print('** Migrating invokeai.init to invokeai.yaml')
migrate_init_file(old_init_file)
# Load new init file into config
config.parse_args(argv=[],conf=OmegaConf.load(new_init_file))
if not config.model_conf_path.exists():
initialize_rootdir(config.root, opt.yes_to_all)
if opt.yes_to_all:
write_default_options(opt, new_init_file)
init_options = Namespace(
precision="float32" if opt.full_precision else "float16"
)
else:
init_options, models_to_download = run_console_ui(opt, new_init_file)
if init_options:
write_opts(init_options, new_init_file)
else:
print(
'\n** CANCELLED AT USER\'S REQUEST. USE THE "invoke.sh" LAUNCHER TO RUN LATER **\n'
)
sys.exit(0)
if opt.skip_support_models:
print("\n** SKIPPING SUPPORT MODEL DOWNLOADS PER USER REQUEST **")
else:
print("\n** DOWNLOADING SUPPORT MODELS **")
download_bert()
download_sd1_clip()
download_sd2_clip()
download_realesrgan()
download_gfpgan()
download_codeformer()
download_clipseg()
download_safety_checker()
download_vaes()
if opt.skip_sd_weights:
print("\n** SKIPPING DIFFUSION WEIGHTS DOWNLOAD PER USER REQUEST **")
elif models_to_download:
print("\n** DOWNLOADING DIFFUSION WEIGHTS **")
process_and_execute(opt, models_to_download)
postscript(errors=errors)
except KeyboardInterrupt:
print("\nGoodbye! Come back soon.")
# -------------------------------------
if __name__ == "__main__":
main()