InvokeAI/invokeai/backend/stable_diffusion/concepts_lib.py
2023-05-03 23:36:51 -04:00

275 lines
10 KiB
Python

"""
Query and install embeddings from the HuggingFace SD Concepts Library
at https://huggingface.co/sd-concepts-library.
The interface is through the Concepts() object.
"""
import os
import re
from typing import Callable
from urllib import error as ul_error
from urllib import request
from huggingface_hub import (
HfApi,
HfFolder,
ModelFilter,
hf_hub_url,
)
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import InvokeAIAppConfig
config = InvokeAIAppConfig()
class HuggingFaceConceptsLibrary(object):
def __init__(self, root=None):
"""
Initialize the Concepts object. May optionally pass a root directory.
"""
self.root = root or config.root
self.hf_api = HfApi()
self.local_concepts = dict()
self.concept_list = None
self.concepts_loaded = dict()
self.triggers = dict() # concept name to trigger phrase
self.concept_names = dict() # trigger phrase to concept name
self.match_trigger = re.compile(
"(<[\w\- >]+>)"
) # trigger is slightly less restrictive than HF concept name
self.match_concept = re.compile(
"<([\w\-]+)>"
) # HF concept name can only contain A-Za-z0-9_-
def list_concepts(self) -> list:
"""
Return a list of all the concepts by name, without the 'sd-concepts-library' part.
Also adds local concepts in invokeai/embeddings folder.
"""
local_concepts_now = self.get_local_concepts(
os.path.join(self.root, "embeddings")
)
local_concepts_to_add = set(local_concepts_now).difference(
set(self.local_concepts)
)
self.local_concepts.update(local_concepts_now)
if self.concept_list is not None:
if local_concepts_to_add:
self.concept_list.extend(list(local_concepts_to_add))
return self.concept_list
return self.concept_list
elif config.internet_available is True:
try:
models = self.hf_api.list_models(
filter=ModelFilter(model_name="sd-concepts-library/")
)
self.concept_list = [a.id.split("/")[1] for a in models]
# when init, add all in dir. when not init, add only concepts added between init and now
self.concept_list.extend(list(local_concepts_to_add))
except Exception as e:
logger.warning(
f"Hugging Face textual inversion concepts libraries could not be loaded. The error was {str(e)}."
)
logger.warning(
"You may load .bin and .pt file(s) manually using the --embedding_directory argument."
)
return self.concept_list
else:
return self.concept_list
def get_concept_model_path(self, concept_name: str) -> str:
"""
Returns the path to the 'learned_embeds.bin' file in
the named concept. Returns None if invalid or cannot
be downloaded.
"""
if not concept_name in self.list_concepts():
logger.warning(
f"{concept_name} is not a local embedding trigger, nor is it a HuggingFace concept. Generation will continue without the concept."
)
return None
return self.get_concept_file(concept_name.lower(), "learned_embeds.bin")
def concept_to_trigger(self, concept_name: str) -> str:
"""
Given a concept name returns its trigger by looking in the
"token_identifier.txt" file.
"""
if concept_name in self.triggers:
return self.triggers[concept_name]
elif self.concept_is_local(concept_name):
trigger = f"<{concept_name}>"
self.triggers[concept_name] = trigger
self.concept_names[trigger] = concept_name
return trigger
file = self.get_concept_file(
concept_name, "token_identifier.txt", local_only=True
)
if not file:
return None
with open(file, "r") as f:
trigger = f.readline()
trigger = trigger.strip()
self.triggers[concept_name] = trigger
self.concept_names[trigger] = concept_name
return trigger
def trigger_to_concept(self, trigger: str) -> str:
"""
Given a trigger phrase, maps it to the concept library name.
Only works if concept_to_trigger() has previously been called
on this library. There needs to be a persistent database for
this.
"""
concept = self.concept_names.get(trigger, None)
return f"<{concept}>" if concept else f"{trigger}"
def replace_triggers_with_concepts(self, prompt: str) -> str:
"""
Given a prompt string that contains <trigger> tags, replace these
tags with the concept name. The reason for this is so that the
concept names get stored in the prompt metadata. There is no
controlling of colliding triggers in the SD library, so it is
better to store the concept name (unique) than the concept trigger
(not necessarily unique!)
"""
if not prompt:
return prompt
triggers = self.match_trigger.findall(prompt)
if not triggers:
return prompt
def do_replace(match) -> str:
return self.trigger_to_concept(match.group(1)) or f"<{match.group(1)}>"
return self.match_trigger.sub(do_replace, prompt)
def replace_concepts_with_triggers(
self,
prompt: str,
load_concepts_callback: Callable[[list], any],
excluded_tokens: list[str],
) -> str:
"""
Given a prompt string that contains `<concept_name>` tags, replace
these tags with the appropriate trigger.
If any `<concept_name>` tags are found, `load_concepts_callback()` is called with a list
of `concepts_name` strings.
`excluded_tokens` are any tokens that should not be replaced, typically because they
are trigger tokens from a locally-loaded embedding.
"""
concepts = self.match_concept.findall(prompt)
if not concepts:
return prompt
load_concepts_callback(concepts)
def do_replace(match) -> str:
if excluded_tokens and f"<{match.group(1)}>" in excluded_tokens:
return f"<{match.group(1)}>"
return self.concept_to_trigger(match.group(1)) or f"<{match.group(1)}>"
return self.match_concept.sub(do_replace, prompt)
def get_concept_file(
self,
concept_name: str,
file_name: str = "learned_embeds.bin",
local_only: bool = False,
) -> str:
if not (
self.concept_is_downloaded(concept_name)
or self.concept_is_local(concept_name)
or local_only
):
self.download_concept(concept_name)
# get local path in invokeai/embeddings if local concept
if self.concept_is_local(concept_name):
concept_path = self._concept_local_path(concept_name)
path = concept_path
else:
concept_path = self._concept_path(concept_name)
path = os.path.join(concept_path, file_name)
return path if os.path.exists(path) else None
def concept_is_local(self, concept_name) -> bool:
return concept_name in self.local_concepts
def concept_is_downloaded(self, concept_name) -> bool:
concept_directory = self._concept_path(concept_name)
return os.path.exists(concept_directory)
def download_concept(self, concept_name) -> bool:
repo_id = self._concept_id(concept_name)
dest = self._concept_path(concept_name)
access_token = HfFolder.get_token()
header = [("Authorization", f"Bearer {access_token}")] if access_token else []
opener = request.build_opener()
opener.addheaders = header
request.install_opener(opener)
os.makedirs(dest, exist_ok=True)
succeeded = True
bytes = 0
def tally_download_size(chunk, size, total):
nonlocal bytes
if chunk == 0:
bytes += total
logger.info(f"Downloading {repo_id}...", end="")
try:
for file in (
"README.md",
"learned_embeds.bin",
"token_identifier.txt",
"type_of_concept.txt",
):
url = hf_hub_url(repo_id, file)
request.urlretrieve(
url, os.path.join(dest, file), reporthook=tally_download_size
)
except ul_error.HTTPError as e:
if e.code == 404:
logger.warning(
f"Concept {concept_name} is not known to the Hugging Face library. Generation will continue without the concept."
)
else:
logger.warning(
f"Failed to download {concept_name}/{file} ({str(e)}. Generation will continue without the concept.)"
)
os.rmdir(dest)
return False
except ul_error.URLError as e:
logger.error(
f"an error occurred while downloading {concept_name}: {str(e)}. This may reflect a network issue. Generation will continue without the concept."
)
os.rmdir(dest)
return False
logger.info("...{:.2f}Kb".format(bytes / 1024))
return succeeded
def _concept_id(self, concept_name: str) -> str:
return f"sd-concepts-library/{concept_name}"
def _concept_path(self, concept_name: str) -> str:
return os.path.join(self.root, "models", "sd-concepts-library", concept_name)
def _concept_local_path(self, concept_name: str) -> str:
filename = self.local_concepts[concept_name]
return os.path.join(self.root, "embeddings", filename)
def get_local_concepts(self, loc_dir: str):
locs_dic = dict()
if os.path.isdir(loc_dir):
for file in os.listdir(loc_dir):
f = os.path.splitext(file)
if f[1] == ".bin" or f[1] == ".pt":
locs_dic[f[0]] = file
return locs_dic