InvokeAI/invokeai/app/services/processor.py
psychedelicious bdfdf854fc fix: canvas not working on queue
Add `batch_id` to outbound events. This necessitates adding it to both `InvocationContext` and `InvocationQueueItem`. This allows the canvas to receive images.

When the user enqueues a batch on the canvas, it is expected that all images from that batch are directed to the canvas.

The simplest, most flexible solution is to add the `batch_id` to the invocation context-y stuff. Then everything knows what batch it came from, and we can have the canvas pick up images associated with its list of canvas `batch_id`s.
2023-09-20 09:57:10 -04:00

209 lines
10 KiB
Python

import time
import traceback
from threading import BoundedSemaphore, Event, Thread
from typing import Optional
import invokeai.backend.util.logging as logger
from ..invocations.baseinvocation import InvocationContext
from ..models.exceptions import CanceledException
from .invocation_queue import InvocationQueueItem
from .invocation_stats import InvocationStatsServiceBase
from .invoker import InvocationProcessorABC, Invoker
class DefaultInvocationProcessor(InvocationProcessorABC):
__invoker_thread: Thread
__stop_event: Event
__invoker: Invoker
__threadLimit: BoundedSemaphore
def start(self, invoker) -> None:
# if we do want multithreading at some point, we could make this configurable
self.__threadLimit = BoundedSemaphore(1)
self.__invoker = invoker
self.__stop_event = Event()
self.__invoker_thread = Thread(
name="invoker_processor",
target=self.__process,
kwargs=dict(stop_event=self.__stop_event),
)
self.__invoker_thread.daemon = True # TODO: make async and do not use threads
self.__invoker_thread.start()
def stop(self, *args, **kwargs) -> None:
self.__stop_event.set()
def __process(self, stop_event: Event):
try:
self.__threadLimit.acquire()
statistics: InvocationStatsServiceBase = self.__invoker.services.performance_statistics
queue_item: Optional[InvocationQueueItem] = None
while not stop_event.is_set():
try:
queue_item = self.__invoker.services.queue.get()
except Exception as e:
self.__invoker.services.logger.error("Exception while getting from queue:\n%s" % e)
if not queue_item: # Probably stopping
# do not hammer the queue
time.sleep(0.5)
continue
try:
graph_execution_state = self.__invoker.services.graph_execution_manager.get(
queue_item.graph_execution_state_id
)
except Exception as e:
self.__invoker.services.logger.error("Exception while retrieving session:\n%s" % e)
self.__invoker.services.events.emit_session_retrieval_error(
queue_batch_id=queue_item.session_queue_batch_id,
queue_item_id=queue_item.session_queue_item_id,
queue_id=queue_item.session_queue_id,
graph_execution_state_id=queue_item.graph_execution_state_id,
error_type=e.__class__.__name__,
error=traceback.format_exc(),
)
continue
try:
invocation = graph_execution_state.execution_graph.get_node(queue_item.invocation_id)
except Exception as e:
self.__invoker.services.logger.error("Exception while retrieving invocation:\n%s" % e)
self.__invoker.services.events.emit_invocation_retrieval_error(
queue_batch_id=queue_item.session_queue_batch_id,
queue_item_id=queue_item.session_queue_item_id,
queue_id=queue_item.session_queue_id,
graph_execution_state_id=queue_item.graph_execution_state_id,
node_id=queue_item.invocation_id,
error_type=e.__class__.__name__,
error=traceback.format_exc(),
)
continue
# get the source node id to provide to clients (the prepared node id is not as useful)
source_node_id = graph_execution_state.prepared_source_mapping[invocation.id]
# Send starting event
self.__invoker.services.events.emit_invocation_started(
queue_batch_id=queue_item.session_queue_batch_id,
queue_item_id=queue_item.session_queue_item_id,
queue_id=queue_item.session_queue_id,
graph_execution_state_id=graph_execution_state.id,
node=invocation.dict(),
source_node_id=source_node_id,
)
# Invoke
try:
graph_id = graph_execution_state.id
model_manager = self.__invoker.services.model_manager
with statistics.collect_stats(invocation, graph_id, model_manager):
# use the internal invoke_internal(), which wraps the node's invoke() method,
# which handles a few things:
# - nodes that require a value, but get it only from a connection
# - referencing the invocation cache instead of executing the node
outputs = invocation.invoke_internal(
InvocationContext(
services=self.__invoker.services,
graph_execution_state_id=graph_execution_state.id,
queue_item_id=queue_item.session_queue_item_id,
queue_id=queue_item.session_queue_id,
queue_batch_id=queue_item.session_queue_batch_id,
)
)
# Check queue to see if this is canceled, and skip if so
if self.__invoker.services.queue.is_canceled(graph_execution_state.id):
continue
# Save outputs and history
graph_execution_state.complete(invocation.id, outputs)
# Save the state changes
self.__invoker.services.graph_execution_manager.set(graph_execution_state)
# Send complete event
self.__invoker.services.events.emit_invocation_complete(
queue_batch_id=queue_item.session_queue_batch_id,
queue_item_id=queue_item.session_queue_item_id,
queue_id=queue_item.session_queue_id,
graph_execution_state_id=graph_execution_state.id,
node=invocation.dict(),
source_node_id=source_node_id,
result=outputs.dict(),
)
statistics.log_stats()
except KeyboardInterrupt:
pass
except CanceledException:
statistics.reset_stats(graph_execution_state.id)
pass
except Exception as e:
error = traceback.format_exc()
logger.error(error)
# Save error
graph_execution_state.set_node_error(invocation.id, error)
# Save the state changes
self.__invoker.services.graph_execution_manager.set(graph_execution_state)
self.__invoker.services.logger.error("Error while invoking:\n%s" % e)
# Send error event
self.__invoker.services.events.emit_invocation_error(
queue_batch_id=queue_item.session_queue_batch_id,
queue_item_id=queue_item.session_queue_item_id,
queue_id=queue_item.session_queue_id,
graph_execution_state_id=graph_execution_state.id,
node=invocation.dict(),
source_node_id=source_node_id,
error_type=e.__class__.__name__,
error=error,
)
statistics.reset_stats(graph_execution_state.id)
pass
# Check queue to see if this is canceled, and skip if so
if self.__invoker.services.queue.is_canceled(graph_execution_state.id):
continue
# Queue any further commands if invoking all
is_complete = graph_execution_state.is_complete()
if queue_item.invoke_all and not is_complete:
try:
self.__invoker.invoke(
session_queue_batch_id=queue_item.session_queue_batch_id,
session_queue_item_id=queue_item.session_queue_item_id,
session_queue_id=queue_item.session_queue_id,
graph_execution_state=graph_execution_state,
invoke_all=True,
)
except Exception as e:
self.__invoker.services.logger.error("Error while invoking:\n%s" % e)
self.__invoker.services.events.emit_invocation_error(
queue_batch_id=queue_item.session_queue_batch_id,
queue_item_id=queue_item.session_queue_item_id,
queue_id=queue_item.session_queue_id,
graph_execution_state_id=graph_execution_state.id,
node=invocation.dict(),
source_node_id=source_node_id,
error_type=e.__class__.__name__,
error=traceback.format_exc(),
)
elif is_complete:
self.__invoker.services.events.emit_graph_execution_complete(
queue_batch_id=queue_item.session_queue_batch_id,
queue_item_id=queue_item.session_queue_item_id,
queue_id=queue_item.session_queue_id,
graph_execution_state_id=graph_execution_state.id,
)
except KeyboardInterrupt:
pass # Log something? KeyboardInterrupt is probably not going to be seen by the processor
finally:
self.__threadLimit.release()