InvokeAI/invokeai/backend/generate.py
2023-03-09 18:15:12 -08:00

1292 lines
50 KiB
Python

# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
# Derived from source code carrying the following copyrights
# Copyright (c) 2022 Machine Vision and Learning Group, LMU Munich
# Copyright (c) 2022 Robin Rombach and Patrick Esser and contributors
import gc
import importlib
import logging
import os
import random
import re
import sys
import time
import traceback
from typing import List
import cv2
import diffusers
import numpy as np
import skimage
import torch
import transformers
from PIL import Image, ImageOps
from accelerate.utils import set_seed
from diffusers.pipeline_utils import DiffusionPipeline
from diffusers.utils.import_utils import is_xformers_available
from omegaconf import OmegaConf
from .args import metadata_from_png
from .generator import infill_methods
from .globals import Globals, global_cache_dir
from .image_util import InitImageResizer, PngWriter, Txt2Mask, configure_model_padding
from .model_management import ModelManager
from .prompting import get_uc_and_c_and_ec
from .prompting.conditioning import log_tokenization
from .stable_diffusion import HuggingFaceConceptsLibrary
from .util import choose_precision, choose_torch_device
def fix_func(orig):
if hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
def new_func(*args, **kw):
device = kw.get("device", "mps")
kw["device"] = "cpu"
return orig(*args, **kw).to(device)
return new_func
return orig
torch.rand = fix_func(torch.rand)
torch.rand_like = fix_func(torch.rand_like)
torch.randn = fix_func(torch.randn)
torch.randn_like = fix_func(torch.randn_like)
torch.randint = fix_func(torch.randint)
torch.randint_like = fix_func(torch.randint_like)
torch.bernoulli = fix_func(torch.bernoulli)
torch.multinomial = fix_func(torch.multinomial)
# this is fallback model in case no default is defined
FALLBACK_MODEL_NAME = "stable-diffusion-1.5"
"""Simplified text to image API for stable diffusion/latent diffusion
Example Usage:
from ldm.generate import Generate
# Create an object with default values
gr = Generate('stable-diffusion-1.4')
# do the slow model initialization
gr.load_model()
# Do the fast inference & image generation. Any options passed here
# override the default values assigned during class initialization
# Will call load_model() if the model was not previously loaded and so
# may be slow at first.
# The method returns a list of images. Each row of the list is a sub-list of [filename,seed]
results = gr.prompt2png(prompt = "an astronaut riding a horse",
outdir = "./outputs/samples",
iterations = 3)
for row in results:
print(f'filename={row[0]}')
print(f'seed ={row[1]}')
# Same thing, but using an initial image.
results = gr.prompt2png(prompt = "an astronaut riding a horse",
outdir = "./outputs/,
iterations = 3,
init_img = "./sketches/horse+rider.png")
for row in results:
print(f'filename={row[0]}')
print(f'seed ={row[1]}')
# Same thing, but we return a series of Image objects, which lets you manipulate them,
# combine them, and save them under arbitrary names
results = gr.prompt2image(prompt = "an astronaut riding a horse"
outdir = "./outputs/")
for row in results:
im = row[0]
seed = row[1]
im.save(f'./outputs/samples/an_astronaut_riding_a_horse-{seed}.png')
im.thumbnail(100,100).save('./outputs/samples/astronaut_thumb.jpg')
Note that the old txt2img() and img2img() calls are deprecated but will
still work.
The full list of arguments to Generate() are:
gr = Generate(
# these values are set once and shouldn't be changed
conf:str = path to configuration file ('configs/models.yaml')
model:str = symbolic name of the model in the configuration file
precision:float = float precision to be used
safety_checker:bool = activate safety checker [False]
# this value is sticky and maintained between generation calls
sampler_name:str = ['ddim', 'k_dpm_2_a', 'k_dpm_2', 'k_dpmpp_2', 'k_dpmpp_2_a', 'k_euler_a', 'k_euler', 'k_heun', 'k_lms', 'plms'] // k_lms
# these are deprecated - use conf and model instead
weights = path to model weights ('models/ldm/stable-diffusion-v1/model.ckpt')
config = path to model configuration ('configs/stable-diffusion/v1-inference.yaml')
)
"""
class Generate:
"""Generate class
Stores default values for multiple configuration items
"""
def __init__(
self,
model=None,
conf="configs/models.yaml",
embedding_path=None,
sampler_name="k_lms",
ddim_eta=0.0, # deterministic
full_precision=False,
precision="auto",
outdir="outputs/img-samples",
gfpgan=None,
codeformer=None,
esrgan=None,
free_gpu_mem: bool = False,
safety_checker: bool = False,
max_loaded_models: int = 2,
# these are deprecated; if present they override values in the conf file
weights=None,
config=None,
):
mconfig = OmegaConf.load(conf)
self.height = None
self.width = None
self.model_manager = None
self.iterations = 1
self.steps = 50
self.cfg_scale = 7.5
self.sampler_name = sampler_name
self.ddim_eta = ddim_eta # same seed always produces same image
self.precision = precision
self.strength = 0.75
self.seamless = False
self.seamless_axes = {"x", "y"}
self.hires_fix = False
self.embedding_path = embedding_path
self.model = None # empty for now
self.model_hash = None
self.sampler = None
self.device = None
self.max_memory_allocated = 0
self.memory_allocated = 0
self.session_peakmem = 0
self.base_generator = None
self.seed = None
self.outdir = outdir
self.gfpgan = gfpgan
self.codeformer = codeformer
self.esrgan = esrgan
self.free_gpu_mem = free_gpu_mem
self.max_loaded_models = (max_loaded_models,)
self.size_matters = True # used to warn once about large image sizes and VRAM
self.txt2mask = None
self.safety_checker = None
self.karras_max = None
self.infill_method = None
# Note that in previous versions, there was an option to pass the
# device to Generate(). However the device was then ignored, so
# it wasn't actually doing anything. This logic could be reinstated.
self.device = torch.device(choose_torch_device())
print(f">> Using device_type {self.device.type}")
if full_precision:
if self.precision != "auto":
raise ValueError("Remove --full_precision / -F if using --precision")
print("Please remove deprecated --full_precision / -F")
print("If auto config does not work you can use --precision=float32")
self.precision = "float32"
if self.precision == "auto":
self.precision = choose_precision(self.device)
Globals.full_precision = self.precision == "float32"
if is_xformers_available():
if torch.cuda.is_available() and not Globals.disable_xformers:
print(">> xformers memory-efficient attention is available and enabled")
else:
print(
">> xformers memory-efficient attention is available but disabled"
)
else:
print(">> xformers not installed")
# model caching system for fast switching
self.model_manager = ModelManager(
mconfig,
self.device,
self.precision,
max_loaded_models=max_loaded_models,
sequential_offload=self.free_gpu_mem,
)
# don't accept invalid models
fallback = self.model_manager.default_model() or FALLBACK_MODEL_NAME
model = model or fallback
if not self.model_manager.valid_model(model):
print(
f'** "{model}" is not a known model name; falling back to {fallback}.'
)
model = None
self.model_name = model or fallback
# for VRAM usage statistics
self.session_peakmem = (
torch.cuda.max_memory_allocated(self.device) if self._has_cuda else None
)
transformers.logging.set_verbosity_error()
# gets rid of annoying messages about random seed
logging.getLogger("pytorch_lightning").setLevel(logging.ERROR)
# load safety checker if requested
if safety_checker:
try:
print(">> Initializing NSFW checker")
from diffusers.pipelines.stable_diffusion.safety_checker import (
StableDiffusionSafetyChecker,
)
from transformers import AutoFeatureExtractor
safety_model_id = "CompVis/stable-diffusion-safety-checker"
safety_model_path = global_cache_dir("hub")
self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(
safety_model_id,
local_files_only=True,
cache_dir=safety_model_path,
)
self.safety_feature_extractor = AutoFeatureExtractor.from_pretrained(
safety_model_id,
local_files_only=True,
cache_dir=safety_model_path,
)
self.safety_checker.to(self.device)
except Exception:
print(
"** An error was encountered while installing the safety checker:"
)
print(traceback.format_exc())
else:
print(">> NSFW checker is disabled")
def prompt2png(self, prompt, outdir, **kwargs):
"""
Takes a prompt and an output directory, writes out the requested number
of PNG files, and returns an array of [[filename,seed],[filename,seed]...]
Optional named arguments are the same as those passed to Generate and prompt2image()
"""
results = self.prompt2image(prompt, **kwargs)
pngwriter = PngWriter(outdir)
prefix = pngwriter.unique_prefix()
outputs = []
for image, seed in results:
name = f"{prefix}.{seed}.png"
path = pngwriter.save_image_and_prompt_to_png(
image, dream_prompt=f"{prompt} -S{seed}", name=name
)
outputs.append([path, seed])
return outputs
def txt2img(self, prompt, **kwargs):
outdir = kwargs.pop("outdir", self.outdir)
return self.prompt2png(prompt, outdir, **kwargs)
def img2img(self, prompt, **kwargs):
outdir = kwargs.pop("outdir", self.outdir)
assert (
"init_img" in kwargs
), "call to img2img() must include the init_img argument"
return self.prompt2png(prompt, outdir, **kwargs)
def prompt2image(
self,
# these are common
prompt,
iterations=None,
steps=None,
seed=None,
cfg_scale=None,
ddim_eta=None,
skip_normalize=False,
image_callback=None,
step_callback=None,
width=None,
height=None,
sampler_name=None,
seamless=False,
seamless_axes={"x", "y"},
log_tokenization=False,
with_variations=None,
variation_amount=0.0,
threshold=0.0,
perlin=0.0,
h_symmetry_time_pct=None,
v_symmetry_time_pct=None,
karras_max=None,
outdir=None,
# these are specific to img2img and inpaint
init_img=None,
init_mask=None,
text_mask=None,
invert_mask=False,
fit=False,
strength=None,
init_color=None,
# these are specific to embiggen (which also relies on img2img args)
embiggen=None,
embiggen_tiles=None,
embiggen_strength=None,
# these are specific to GFPGAN/ESRGAN
gfpgan_strength=0,
facetool=None,
facetool_strength=0,
codeformer_fidelity=None,
save_original=False,
upscale=None,
upscale_denoise_str=0.75,
# this is specific to inpainting and causes more extreme inpainting
inpaint_replace=0.0,
# This controls the size at which inpaint occurs (scaled up for inpaint, then back down for the result)
inpaint_width=None,
inpaint_height=None,
# This will help match inpainted areas to the original image more smoothly
mask_blur_radius: int = 8,
# Set this True to handle KeyboardInterrupt internally
catch_interrupts=False,
hires_fix=False,
use_mps_noise=False,
# Seam settings for outpainting
seam_size: int = 0,
seam_blur: int = 0,
seam_strength: float = 0.7,
seam_steps: int = 10,
tile_size: int = 32,
infill_method=None,
force_outpaint: bool = False,
enable_image_debugging=False,
**args,
): # eat up additional cruft
self.clear_cuda_stats()
"""
ldm.generate.prompt2image() is the common entry point for txt2img() and img2img()
It takes the following arguments:
prompt // prompt string (no default)
iterations // iterations (1); image count=iterations
steps // refinement steps per iteration
seed // seed for random number generator
width // width of image, in multiples of 64 (512)
height // height of image, in multiples of 64 (512)
cfg_scale // how strongly the prompt influences the image (7.5) (must be >1)
seamless // whether the generated image should tile
hires_fix // whether the Hires Fix should be applied during generation
init_img // path to an initial image
init_mask // path to a mask for the initial image
text_mask // a text string that will be used to guide clipseg generation of the init_mask
invert_mask // boolean, if true invert the mask
strength // strength for noising/unnoising init_img. 0.0 preserves image exactly, 1.0 replaces it completely
facetool_strength // strength for GFPGAN/CodeFormer. 0.0 preserves image exactly, 1.0 replaces it completely
ddim_eta // image randomness (eta=0.0 means the same seed always produces the same image)
step_callback // a function or method that will be called each step
image_callback // a function or method that will be called each time an image is generated
with_variations // a weighted list [(seed_1, weight_1), (seed_2, weight_2), ...] of variations which should be applied before doing any generation
variation_amount // optional 0-1 value to slerp from -S noise to random noise (allows variations on an image)
threshold // optional value >=0 to add thresholding to latent values for k-diffusion samplers (0 disables)
perlin // optional 0-1 value to add a percentage of perlin noise to the initial noise
h_symmetry_time_pct // optional 0-1 value that indicates the time at which horizontal symmetry is applied
v_symmetry_time_pct // optional 0-1 value that indicates the time at which vertical symmetry is applied
embiggen // scale factor relative to the size of the --init_img (-I), followed by ESRGAN upscaling strength (0-1.0), followed by minimum amount of overlap between tiles as a decimal ratio (0 - 1.0) or number of pixels
embiggen_tiles // list of tiles by number in order to process and replace onto the image e.g. `0 2 4`
embiggen_strength // strength for embiggen. 0.0 preserves image exactly, 1.0 replaces it completely
To use the step callback, define a function that receives two arguments:
- Image GPU data
- The step number
To use the image callback, define a function of method that receives two arguments, an Image object
and the seed. You can then do whatever you like with the image, including converting it to
different formats and manipulating it. For example:
def process_image(image,seed):
image.save(f{'images/seed.png'})
The code used to save images to a directory can be found in ldm/invoke/pngwriter.py.
It contains code to create the requested output directory, select a unique informative
name for each image, and write the prompt into the PNG metadata.
"""
# TODO: convert this into a getattr() loop
steps = steps or self.steps
width = width or self.width
height = height or self.height
seamless = seamless or self.seamless
seamless_axes = seamless_axes or self.seamless_axes
hires_fix = hires_fix or self.hires_fix
cfg_scale = cfg_scale or self.cfg_scale
ddim_eta = ddim_eta or self.ddim_eta
iterations = iterations or self.iterations
strength = strength or self.strength
outdir = outdir or self.outdir
self.seed = seed
self.log_tokenization = log_tokenization
self.step_callback = step_callback
self.karras_max = karras_max
self.infill_method = (
infill_method or infill_methods()[0],
) # The infill method to use
with_variations = [] if with_variations is None else with_variations
# will instantiate the model or return it from cache
model = self.set_model(self.model_name)
# self.width and self.height are set by set_model()
# to the width and height of the image training set
width = width or self.width
height = height or self.height
if isinstance(model, DiffusionPipeline):
configure_model_padding(model.unet, seamless, seamless_axes)
configure_model_padding(model.vae, seamless, seamless_axes)
else:
configure_model_padding(model, seamless, seamless_axes)
assert cfg_scale > 1.0, "CFG_Scale (-C) must be >1.0"
assert threshold >= 0.0, "--threshold must be >=0.0"
assert (
0.0 < strength <= 1.0
), "img2img and inpaint strength can only work with 0.0 < strength < 1.0"
assert (
0.0 <= variation_amount <= 1.0
), "-v --variation_amount must be in [0.0, 1.0]"
assert 0.0 <= perlin <= 1.0, "--perlin must be in [0.0, 1.0]"
assert (embiggen == None and embiggen_tiles == None) or (
(embiggen != None or embiggen_tiles != None) and init_img != None
), "Embiggen requires an init/input image to be specified"
if len(with_variations) > 0 or variation_amount > 1.0:
assert seed is not None, "seed must be specified when using with_variations"
if variation_amount == 0.0:
assert (
iterations == 1
), "when using --with_variations, multiple iterations are only possible when using --variation_amount"
assert all(
0 <= weight <= 1 for _, weight in with_variations
), f"variation weights must be in [0.0, 1.0]: got {[weight for _, weight in with_variations]}"
width, height, _ = self._resolution_check(width, height, log=True)
assert (
inpaint_replace >= 0.0 and inpaint_replace <= 1.0
), "inpaint_replace must be between 0.0 and 1.0"
if sampler_name and (sampler_name != self.sampler_name):
self.sampler_name = sampler_name
self._set_scheduler()
# apply the concepts library to the prompt
prompt = self.huggingface_concepts_library.replace_concepts_with_triggers(
prompt,
lambda concepts: self.load_huggingface_concepts(concepts),
self.model.textual_inversion_manager.get_all_trigger_strings(),
)
tic = time.time()
if self._has_cuda():
torch.cuda.reset_peak_memory_stats()
results = list()
try:
uc, c, extra_conditioning_info = get_uc_and_c_and_ec(
prompt,
model=self.model,
skip_normalize_legacy_blend=skip_normalize,
log_tokens=self.log_tokenization,
)
init_image, mask_image = self._make_images(
init_img,
init_mask,
width,
height,
fit=fit,
text_mask=text_mask,
invert_mask=invert_mask,
force_outpaint=force_outpaint,
)
# TODO: Hacky selection of operation to perform. Needs to be refactored.
generator = self.select_generator(
init_image, mask_image, embiggen, hires_fix, force_outpaint
)
generator.set_variation(self.seed, variation_amount, with_variations)
generator.use_mps_noise = use_mps_noise
checker = (
{
"checker": self.safety_checker,
"extractor": self.safety_feature_extractor,
}
if self.safety_checker
else None
)
results = generator.generate(
prompt,
iterations=iterations,
seed=self.seed,
sampler=self.sampler,
steps=steps,
cfg_scale=cfg_scale,
conditioning=(uc, c, extra_conditioning_info),
ddim_eta=ddim_eta,
image_callback=image_callback, # called after the final image is generated
step_callback=step_callback, # called after each intermediate image is generated
width=width,
height=height,
init_img=init_img, # embiggen needs to manipulate from the unmodified init_img
init_image=init_image, # notice that init_image is different from init_img
mask_image=mask_image,
strength=strength,
threshold=threshold,
perlin=perlin,
h_symmetry_time_pct=h_symmetry_time_pct,
v_symmetry_time_pct=v_symmetry_time_pct,
embiggen=embiggen,
embiggen_tiles=embiggen_tiles,
embiggen_strength=embiggen_strength,
inpaint_replace=inpaint_replace,
mask_blur_radius=mask_blur_radius,
safety_checker=checker,
seam_size=seam_size,
seam_blur=seam_blur,
seam_strength=seam_strength,
seam_steps=seam_steps,
tile_size=tile_size,
infill_method=infill_method,
force_outpaint=force_outpaint,
inpaint_height=inpaint_height,
inpaint_width=inpaint_width,
enable_image_debugging=enable_image_debugging,
free_gpu_mem=self.free_gpu_mem,
clear_cuda_cache=self.clear_cuda_cache,
)
if init_color:
self.correct_colors(
image_list=results,
reference_image_path=init_color,
image_callback=image_callback,
)
if upscale is not None or facetool_strength > 0:
self.upscale_and_reconstruct(
results,
upscale=upscale,
upscale_denoise_str=upscale_denoise_str,
facetool=facetool,
strength=facetool_strength,
codeformer_fidelity=codeformer_fidelity,
save_original=save_original,
image_callback=image_callback,
)
except KeyboardInterrupt:
# Clear the CUDA cache on an exception
self.clear_cuda_cache()
if catch_interrupts:
print("**Interrupted** Partial results will be returned.")
else:
raise KeyboardInterrupt
except RuntimeError:
# Clear the CUDA cache on an exception
self.clear_cuda_cache()
print(traceback.format_exc(), file=sys.stderr)
print(">> Could not generate image.")
toc = time.time()
print("\n>> Usage stats:")
print(f">> {len(results)} image(s) generated in", "%4.2fs" % (toc - tic))
self.print_cuda_stats()
return results
def gather_cuda_stats(self):
if self._has_cuda():
self.max_memory_allocated = max(
self.max_memory_allocated, torch.cuda.max_memory_allocated(self.device)
)
self.memory_allocated = max(
self.memory_allocated, torch.cuda.memory_allocated(self.device)
)
self.session_peakmem = max(
self.session_peakmem, torch.cuda.max_memory_allocated(self.device)
)
def clear_cuda_cache(self):
if self._has_cuda():
self.gather_cuda_stats()
# Run garbage collection prior to emptying the CUDA cache
gc.collect()
torch.cuda.empty_cache()
def clear_cuda_stats(self):
self.max_memory_allocated = 0
self.memory_allocated = 0
def print_cuda_stats(self):
if self._has_cuda():
self.gather_cuda_stats()
print(
">> Max VRAM used for this generation:",
"%4.2fG." % (self.max_memory_allocated / 1e9),
"Current VRAM utilization:",
"%4.2fG" % (self.memory_allocated / 1e9),
)
print(
">> Max VRAM used since script start: ",
"%4.2fG" % (self.session_peakmem / 1e9),
)
# this needs to be generalized to all sorts of postprocessors, which should be wrapped
# in a nice harmonized call signature. For now we have a bunch of if/elses!
def apply_postprocessor(
self,
image_path,
tool="gfpgan", # one of 'upscale', 'gfpgan', 'codeformer', 'outpaint', or 'embiggen'
facetool_strength=0.0,
codeformer_fidelity=0.75,
upscale=None,
upscale_denoise_str=0.75,
out_direction=None,
outcrop=[],
save_original=True, # to get new name
callback=None,
opt=None,
):
# retrieve the seed from the image;
seed = None
prompt = None
args = metadata_from_png(image_path)
seed = opt.seed or args.seed
if seed is None or seed < 0:
seed = random.randrange(0, np.iinfo(np.uint32).max)
prompt = opt.prompt or args.prompt or ""
print(f'>> using seed {seed} and prompt "{prompt}" for {image_path}')
# try to reuse the same filename prefix as the original file.
# we take everything up to the first period
prefix = None
m = re.match(r"^([^.]+)\.", os.path.basename(image_path))
if m:
prefix = m.groups()[0]
# face fixers and esrgan take an Image, but embiggen takes a path
image = Image.open(image_path)
# used by multiple postfixers
# todo: cross-attention control
uc, c, extra_conditioning_info = get_uc_and_c_and_ec(
prompt,
model=self.model,
skip_normalize_legacy_blend=opt.skip_normalize,
log_tokens=log_tokenization,
)
if tool in ("gfpgan", "codeformer", "upscale"):
if tool == "gfpgan":
facetool = "gfpgan"
elif tool == "codeformer":
facetool = "codeformer"
elif tool == "upscale":
facetool = "gfpgan" # but won't be run
facetool_strength = 0
return self.upscale_and_reconstruct(
[[image, seed]],
facetool=facetool,
strength=facetool_strength,
codeformer_fidelity=codeformer_fidelity,
save_original=save_original,
upscale=upscale,
upscale_denoise_str=upscale_denoise_str,
image_callback=callback,
prefix=prefix,
)
elif tool == "outcrop":
from .restoration.outcrop import Outcrop
extend_instructions = {}
for direction, pixels in _pairwise(opt.outcrop):
try:
extend_instructions[direction] = int(pixels)
except ValueError:
print(
'** invalid extension instruction. Use <directions> <pixels>..., as in "top 64 left 128 right 64 bottom 64"'
)
opt.seed = seed
opt.prompt = prompt
if len(extend_instructions) > 0:
restorer = Outcrop(
image,
self,
)
return restorer.process(
extend_instructions,
opt=opt,
orig_opt=args,
image_callback=callback,
prefix=prefix,
)
elif tool == "embiggen":
# fetch the metadata from the image
generator = self.select_generator(embiggen=True)
opt.strength = opt.embiggen_strength or 0.40
print(
f">> Setting img2img strength to {opt.strength} for happy embiggening"
)
generator.generate(
prompt,
sampler=self.sampler,
steps=opt.steps,
cfg_scale=opt.cfg_scale,
ddim_eta=self.ddim_eta,
conditioning=(uc, c, extra_conditioning_info),
init_img=image_path, # not the Image! (sigh)
init_image=image, # embiggen wants both! (sigh)
strength=opt.strength,
width=opt.width,
height=opt.height,
embiggen=opt.embiggen,
embiggen_tiles=opt.embiggen_tiles,
embiggen_strength=opt.embiggen_strength,
image_callback=callback,
clear_cuda_cache=self.clear_cuda_cache,
)
elif tool == "outpaint":
from .restoration.outpaint import Outpaint
restorer = Outpaint(image, self)
return restorer.process(opt, args, image_callback=callback, prefix=prefix)
elif tool is None:
print(
"* please provide at least one postprocessing option, such as -G or -U"
)
return None
else:
print(f"* postprocessing tool {tool} is not yet supported")
return None
def select_generator(
self,
init_image: Image.Image = None,
mask_image: Image.Image = None,
embiggen: bool = False,
hires_fix: bool = False,
force_outpaint: bool = False,
):
if hires_fix:
return self._make_txt2img2img()
if embiggen is not None:
return self._make_embiggen()
if ((init_image is not None) and (mask_image is not None)) or force_outpaint:
return self._make_inpaint()
if init_image is not None:
return self._make_img2img()
return self._make_txt2img()
def _make_images(
self,
img,
mask,
width,
height,
fit=False,
text_mask=None,
invert_mask=False,
force_outpaint=False,
):
init_image = None
init_mask = None
if not img:
return None, None
image = self._load_img(img)
if image.width < self.width and image.height < self.height:
print(
f">> WARNING: img2img and inpainting may produce unexpected results with initial images smaller than {self.width}x{self.height} in both dimensions"
)
# if image has a transparent area and no mask was provided, then try to generate mask
if self._has_transparency(image):
self._transparency_check_and_warning(image, mask, force_outpaint)
init_mask = self._create_init_mask(image, width, height, fit=fit)
if (image.width * image.height) > (
self.width * self.height
) and self.size_matters:
print(
">> This input is larger than your defaults. If you run out of memory, please use a smaller image."
)
self.size_matters = False
init_image = self._create_init_image(image, width, height, fit=fit)
if mask:
mask_image = self._load_img(mask)
init_mask = self._create_init_mask(mask_image, width, height, fit=fit)
elif text_mask:
init_mask = self._txt2mask(image, text_mask, width, height, fit=fit)
if init_mask and invert_mask:
init_mask = ImageOps.invert(init_mask)
return init_image, init_mask
def _make_base(self):
return self._load_generator("", "Generator")
def _make_txt2img(self):
return self._load_generator(".txt2img", "Txt2Img")
def _make_img2img(self):
return self._load_generator(".img2img", "Img2Img")
def _make_embiggen(self):
return self._load_generator(".embiggen", "Embiggen")
def _make_txt2img2img(self):
return self._load_generator(".txt2img2img", "Txt2Img2Img")
def _make_inpaint(self):
return self._load_generator(".inpaint", "Inpaint")
def _load_generator(self, module, class_name):
mn = f"invokeai.backend.generator{module}"
cn = class_name
module = importlib.import_module(mn)
constructor = getattr(module, cn)
return constructor(self.model, self.precision)
def load_model(self):
"""
preload model identified in self.model_name
"""
return self.set_model(self.model_name)
def set_model(self, model_name):
"""
Given the name of a model defined in models.yaml, will load and initialize it
and return the model object. Previously-used models will be cached.
If the passed model_name is invalid, raises a KeyError.
If the model fails to load for some reason, will attempt to load the previously-
loaded model (if any). If that fallback fails, will raise an AssertionError
"""
if self.model_name == model_name and self.model is not None:
return self.model
previous_model_name = self.model_name
# the model cache does the loading and offloading
cache = self.model_manager
if not cache.valid_model(model_name):
raise KeyError(
f'** "{model_name}" is not a known model name. Cannot change.'
)
cache.print_vram_usage()
# have to get rid of all references to model in order
# to free it from GPU memory
self.model = None
self.sampler = None
self.generators = {}
gc.collect()
try:
model_data = cache.get_model(model_name)
except Exception as e:
print(f"** model {model_name} could not be loaded: {str(e)}")
print(traceback.format_exc(), file=sys.stderr)
if previous_model_name is None:
raise e
print("** trying to reload previous model")
model_data = cache.get_model(previous_model_name) # load previous
if model_data is None:
raise e
model_name = previous_model_name
self.model = model_data["model"]
self.width = model_data["width"]
self.height = model_data["height"]
self.model_hash = model_data["hash"]
# uncache generators so they pick up new models
self.generators = {}
set_seed(random.randrange(0, np.iinfo(np.uint32).max))
if self.embedding_path is not None:
print(f">> Loading embeddings from {self.embedding_path}")
for root, _, files in os.walk(self.embedding_path):
for name in files:
ti_path = os.path.join(root, name)
self.model.textual_inversion_manager.load_textual_inversion(
ti_path, defer_injecting_tokens=True
)
print(
f'>> Textual inversion triggers: {", ".join(sorted(self.model.textual_inversion_manager.get_all_trigger_strings()))}'
)
self.model_name = model_name
self._set_scheduler() # requires self.model_name to be set first
return self.model
def load_huggingface_concepts(self, concepts: list[str]):
self.model.textual_inversion_manager.load_huggingface_concepts(concepts)
@property
def huggingface_concepts_library(self) -> HuggingFaceConceptsLibrary:
return self.model.textual_inversion_manager.hf_concepts_library
@property
def embedding_trigger_strings(self) -> List[str]:
return self.model.textual_inversion_manager.get_all_trigger_strings()
def correct_colors(self, image_list, reference_image_path, image_callback=None):
reference_image = Image.open(reference_image_path)
correction_target = cv2.cvtColor(np.asarray(reference_image), cv2.COLOR_RGB2LAB)
for r in image_list:
image, seed = r
image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2LAB)
image = skimage.exposure.match_histograms(
image, correction_target, channel_axis=2
)
image = Image.fromarray(
cv2.cvtColor(image, cv2.COLOR_LAB2RGB).astype("uint8")
)
if image_callback is not None:
image_callback(image, seed)
else:
r[0] = image
def upscale_and_reconstruct(
self,
image_list,
facetool="gfpgan",
upscale=None,
upscale_denoise_str=0.75,
strength=0.0,
codeformer_fidelity=0.75,
save_original=False,
image_callback=None,
prefix=None,
):
results = []
for r in image_list:
image, seed = r
try:
if strength > 0:
if self.gfpgan is not None or self.codeformer is not None:
if facetool == "gfpgan":
if self.gfpgan is None:
print(
">> GFPGAN not found. Face restoration is disabled."
)
else:
image = self.gfpgan.process(image, strength, seed)
if facetool == "codeformer":
if self.codeformer is None:
print(
">> CodeFormer not found. Face restoration is disabled."
)
else:
cf_device = (
"cpu" if str(self.device) == "mps" else self.device
)
image = self.codeformer.process(
image=image,
strength=strength,
device=cf_device,
seed=seed,
fidelity=codeformer_fidelity,
)
else:
print(">> Face Restoration is disabled.")
if upscale is not None:
if self.esrgan is not None:
if len(upscale) < 2:
upscale.append(0.75)
image = self.esrgan.process(
image,
upscale[1],
seed,
int(upscale[0]),
denoise_str=upscale_denoise_str,
)
else:
print(">> ESRGAN is disabled. Image not upscaled.")
except Exception as e:
print(
f">> Error running RealESRGAN or GFPGAN. Your image was not upscaled.\n{e}"
)
if image_callback is not None:
image_callback(image, seed, upscaled=True, use_prefix=prefix)
else:
r[0] = image
results.append([image, seed])
return results
def apply_textmask(
self, image_path: str, prompt: str, callback, threshold: float = 0.5
):
assert os.path.exists(
image_path
), f'** "{image_path}" not found. Please enter the name of an existing image file to mask **'
basename, _ = os.path.splitext(os.path.basename(image_path))
if self.txt2mask is None:
self.txt2mask = Txt2Mask(device=self.device, refined=True)
segmented = self.txt2mask.segment(image_path, prompt)
trans = segmented.to_transparent()
inverse = segmented.to_transparent(invert=True)
mask = segmented.to_mask(threshold)
path_filter = re.compile(r'[<>:"/\\|?*]')
safe_prompt = path_filter.sub("_", prompt)[:50].rstrip(" .")
callback(trans, f"{safe_prompt}.deselected", use_prefix=basename)
callback(inverse, f"{safe_prompt}.selected", use_prefix=basename)
callback(mask, f"{safe_prompt}.masked", use_prefix=basename)
# to help WebGUI - front end to generator util function
def sample_to_image(self, samples):
return self._make_base().sample_to_image(samples)
def sample_to_lowres_estimated_image(self, samples):
return self._make_base().sample_to_lowres_estimated_image(samples)
def is_legacy_model(self, model_name) -> bool:
return self.model_manager.is_legacy(model_name)
def _set_scheduler(self):
default = self.model.scheduler
# See https://github.com/huggingface/diffusers/issues/277#issuecomment-1371428672
scheduler_map = dict(
ddim=diffusers.DDIMScheduler,
dpmpp_2=diffusers.DPMSolverMultistepScheduler,
k_dpm_2=diffusers.KDPM2DiscreteScheduler,
k_dpm_2_a=diffusers.KDPM2AncestralDiscreteScheduler,
# DPMSolverMultistepScheduler is technically not `k_` anything, as it is neither
# the k-diffusers implementation nor included in EDM (Karras 2022), but we can
# provide an alias for compatibility.
k_dpmpp_2=diffusers.DPMSolverMultistepScheduler,
k_euler=diffusers.EulerDiscreteScheduler,
k_euler_a=diffusers.EulerAncestralDiscreteScheduler,
k_heun=diffusers.HeunDiscreteScheduler,
k_lms=diffusers.LMSDiscreteScheduler,
plms=diffusers.PNDMScheduler,
)
if self.sampler_name in scheduler_map:
sampler_class = scheduler_map[self.sampler_name]
msg = (
f">> Setting Sampler to {self.sampler_name} ({sampler_class.__name__})"
)
self.sampler = sampler_class.from_config(self.model.scheduler.config)
else:
msg = (
f">> Unsupported Sampler: {self.sampler_name} "
f"Defaulting to {default}"
)
self.sampler = default
print(msg)
if not hasattr(self.sampler, "uses_inpainting_model"):
# FIXME: terrible kludge!
self.sampler.uses_inpainting_model = lambda: False
def _load_img(self, img) -> Image:
if isinstance(img, Image.Image):
image = img
print(f">> using provided input image of size {image.width}x{image.height}")
elif isinstance(img, str):
assert os.path.exists(img), f">> {img}: File not found"
image = Image.open(img)
print(
f">> loaded input image of size {image.width}x{image.height} from {img}"
)
else:
image = Image.open(img)
print(f">> loaded input image of size {image.width}x{image.height}")
image = ImageOps.exif_transpose(image)
return image
def _create_init_image(self, image: Image.Image, width, height, fit=True):
if image.mode != "RGBA":
image = image.convert("RGBA")
image = (
self._fit_image(image, (width, height))
if fit
else self._squeeze_image(image)
)
return image
def _create_init_mask(self, image, width, height, fit=True):
# convert into a black/white mask
image = self._image_to_mask(image)
image = image.convert("RGB")
image = (
self._fit_image(image, (width, height))
if fit
else self._squeeze_image(image)
)
return image
# The mask is expected to have the region to be inpainted
# with alpha transparency. It converts it into a black/white
# image with the transparent part black.
def _image_to_mask(self, mask_image: Image.Image, invert=False) -> Image:
# Obtain the mask from the transparency channel
if mask_image.mode == "L":
mask = mask_image
elif mask_image.mode in ("RGB", "P"):
mask = mask_image.convert("L")
else:
# Obtain the mask from the transparency channel
mask = Image.new(mode="L", size=mask_image.size, color=255)
mask.putdata(mask_image.getdata(band=3))
if invert:
mask = ImageOps.invert(mask)
return mask
def _txt2mask(
self, image: Image, text_mask: list, width, height, fit=True
) -> Image:
prompt = text_mask[0]
confidence_level = text_mask[1] if len(text_mask) > 1 else 0.5
if self.txt2mask is None:
self.txt2mask = Txt2Mask(device=self.device)
segmented = self.txt2mask.segment(image, prompt)
mask = segmented.to_mask(float(confidence_level))
mask = mask.convert("RGB")
mask = (
self._fit_image(mask, (width, height)) if fit else self._squeeze_image(mask)
)
return mask
def _has_transparency(self, image):
if image.info.get("transparency", None) is not None:
return True
if image.mode == "P":
transparent = image.info.get("transparency", -1)
for _, index in image.getcolors():
if index == transparent:
return True
elif image.mode == "RGBA":
extrema = image.getextrema()
if extrema[3][0] < 255:
return True
return False
def _check_for_erasure(self, image: Image.Image) -> bool:
if image.mode not in ("RGBA", "RGB"):
return False
width, height = image.size
pixdata = image.load()
colored = 0
for y in range(height):
for x in range(width):
if pixdata[x, y][3] == 0:
r, g, b, _ = pixdata[x, y]
if (r, g, b) != (0, 0, 0) and (r, g, b) != (255, 255, 255):
colored += 1
return colored == 0
def _transparency_check_and_warning(self, image, mask, force_outpaint=False):
if not mask:
print(
">> Initial image has transparent areas. Will inpaint in these regions."
)
if (not force_outpaint) and self._check_for_erasure(image):
print(
">> WARNING: Colors underneath the transparent region seem to have been erased.\n",
">> Inpainting will be suboptimal. Please preserve the colors when making\n",
">> a transparency mask, or provide mask explicitly using --init_mask (-M).",
)
def _squeeze_image(self, image):
x, y, resize_needed = self._resolution_check(image.width, image.height)
if resize_needed:
return InitImageResizer(image).resize(x, y)
return image
def _fit_image(self, image, max_dimensions):
w, h = max_dimensions
print(f">> image will be resized to fit inside a box {w}x{h} in size.")
# note that InitImageResizer does the multiple of 64 truncation internally
image = InitImageResizer(image).resize(width=w, height=h)
print(
f">> after adjusting image dimensions to be multiples of 64, init image is {image.width}x{image.height}"
)
return image
def _resolution_check(self, width, height, log=False):
resize_needed = False
w, h = map(
lambda x: x - x % 64, (width, height)
) # resize to integer multiple of 64
if h != height or w != width:
if log:
print(
f">> Provided width and height must be multiples of 64. Auto-resizing to {w}x{h}"
)
height = h
width = w
resize_needed = True
return width, height, resize_needed
def _has_cuda(self):
return self.device.type == "cuda"
def write_intermediate_images(self, modulus, path):
counter = -1
if not os.path.exists(path):
os.makedirs(path)
def callback(img):
nonlocal counter
counter += 1
if counter % modulus != 0:
return
image = self.sample_to_image(img)
image.save(os.path.join(path, f"{counter:03}.png"), "PNG")
return callback
def _pairwise(iterable):
"s -> (s0, s1), (s2, s3), (s4, s5), ..."
a = iter(iterable)
return zip(a, a)